直線與圓、圓與圓的位置關(guān)系小結(jié)(1) 課件-2023-2024學(xué)年高二上學(xué)期數(shù)學(xué)人教A版(2019)選擇性必修第一冊(cè)_第1頁(yè)
直線與圓、圓與圓的位置關(guān)系小結(jié)(1) 課件-2023-2024學(xué)年高二上學(xué)期數(shù)學(xué)人教A版(2019)選擇性必修第一冊(cè)_第2頁(yè)
直線與圓、圓與圓的位置關(guān)系小結(jié)(1) 課件-2023-2024學(xué)年高二上學(xué)期數(shù)學(xué)人教A版(2019)選擇性必修第一冊(cè)_第3頁(yè)
直線與圓、圓與圓的位置關(guān)系小結(jié)(1) 課件-2023-2024學(xué)年高二上學(xué)期數(shù)學(xué)人教A版(2019)選擇性必修第一冊(cè)_第4頁(yè)
直線與圓、圓與圓的位置關(guān)系小結(jié)(1) 課件-2023-2024學(xué)年高二上學(xué)期數(shù)學(xué)人教A版(2019)選擇性必修第一冊(cè)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二章《直線與圓的方程》小結(jié)復(fù)習(xí)閱讀教材P100----1011.明確本章知識(shí)結(jié)構(gòu)2.掌握每個(gè)知識(shí)點(diǎn)的典型類型的通性通法3.歸納總結(jié)每類問(wèn)題的方法及易錯(cuò)點(diǎn)(1)重點(diǎn)知識(shí)再現(xiàn)(2)基本方法重溫(3)基本技能過(guò)手重點(diǎn)知識(shí)要點(diǎn)梳理:直線方程、圓的方程直線的位置關(guān)系的判定距離直線與圓的位置關(guān)系圓與圓的位置關(guān)系弦長(zhǎng)公式切線方程直線與圓中的動(dòng)點(diǎn)、最值問(wèn)題直線系、圓系方程(1)重點(diǎn)知識(shí)再現(xiàn)(1)重點(diǎn)知識(shí)再現(xiàn)基本方法重溫練透基點(diǎn),研通難點(diǎn)易錯(cuò)點(diǎn)突破1:斜率與傾斜角關(guān)系基本方法重溫基本技能過(guò)手基本方法重溫難點(diǎn)突破2:解決與含參數(shù)的直線有關(guān)相交問(wèn)題基本技能過(guò)手基本方法重溫分析:因所求圓的面積最小,因而所求圓的半徑最小,而以交點(diǎn)為直徑端點(diǎn)的圓的半徑最小,故為所求圓。解:例3

求過(guò)直線l:2x+y+4=0與圓C:

x2+y2+2x-4y+1=0的交點(diǎn),且面積最小的圓的方程.xyO得交點(diǎn)故所求圓方程為:即難點(diǎn)突破3:圓系方程基本方法重溫解2:例3

求過(guò)直線l:2x+y+4=0與圓C:

x2+y2+2x-4y+1=0的交點(diǎn),且面積最小的圓的方程.xyO由已知可設(shè)所求圓方程為:即當(dāng)時(shí),故面積最小的圓的方程:圓心半徑:基本方法重溫鞏固領(lǐng)悟練習(xí):已知圓C1:x2+y2+6x-4=0和圓C2:x2+y2+6y-28=0.(1)求兩圓公共弦所在直線的方程及弦長(zhǎng);(2)求經(jīng)過(guò)兩圓交點(diǎn)且圓心在直線x-y-4=0上的圓的方程.①-②,得x-y+4=0.∵A,B兩點(diǎn)坐標(biāo)都滿足此方程,∴x-y+4=0即為兩圓公共弦所在直線的方程.基本方法重溫鞏固領(lǐng)悟練習(xí):已知圓C1:x2+y2+6x-4=0和圓C2:x2+y2+6y-28=0.(1)求兩圓公共弦所在直線的方程及弦長(zhǎng);(2)求經(jīng)過(guò)兩圓交點(diǎn)且圓心在直線x-y-4=0上的圓的方程.基本方法重溫相交弦及圓系方程問(wèn)題的解決1.求兩圓的公共弦所在直線的方程的方法:將兩圓方程相減即得兩圓公共弦所在直線方程,但必須注意只有當(dāng)兩圓方程中二次項(xiàng)系數(shù)相同時(shí),才能如此求解,否則應(yīng)先調(diào)整系數(shù).2.求兩圓公共弦長(zhǎng)的方法:一是聯(lián)立兩圓方程求出交點(diǎn)坐標(biāo),再用距離公式求解;二是先求出兩圓公共弦所在的直線方程,再利用半徑長(zhǎng)、弦心距和弦長(zhǎng)的一半構(gòu)成的直角三角形求解3.已知圓C1:x2+y2+D1x+E1y+F1=0與圓C2:x2+y2+D2x+E2y+F2=0相交,則過(guò)兩圓交點(diǎn)的圓的方程可設(shè)為x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).基本方法重溫考點(diǎn)四與圓有關(guān)的軌跡問(wèn)題與圓有關(guān)的軌跡問(wèn)題【例4】已知圓C:x2+y2+2x-4y+1=0,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P在圓外,過(guò)點(diǎn)P作圓C的切線,設(shè)切點(diǎn)為M.(1)若點(diǎn)P運(yùn)動(dòng)到(1,3)處,求此時(shí)切線l的方程;基本方法重溫(2)求滿足|PM|=|PO|的點(diǎn)P的軌跡方程.解:(2)設(shè)P(x,y),因?yàn)閨PM|=|PO|,所以(x+1)2+(y-2)2-4=x2+y2.整理得2x-4y+1=0,即點(diǎn)P的軌跡方程為2x-4y+1=0.(2)求滿足|PM|=|PO|的點(diǎn)P的軌跡方程.解:(2)設(shè)P(x,y),因?yàn)閨PM|=|PO|,所以(x+1)2+(y-2)2-4=x2+y2.整理得2x-4y+1=0,即點(diǎn)P的軌跡方程為2x-4y+1=0.反思?xì)w納求與圓有關(guān)的軌跡方程時(shí),常用以下方法:(1)直接法:根據(jù)題設(shè)條件直接列出方程;(2)定義法:根據(jù)定義寫出方程;(3)幾何法:利用圓的性質(zhì)列方程;(4)代入法:找出要求點(diǎn)與已知點(diǎn)的關(guān)系,代入已知點(diǎn)滿足的關(guān)系式.基本方法重溫例5.

已知定點(diǎn)A(3,0),P是圓上x2+y2=1上的動(dòng)點(diǎn),∠AOP

的平分線交PA

于N

,求點(diǎn)N的軌跡.MPxyAON例5.

已知定點(diǎn)A(3,0),P是圓上x2+y2=1上的動(dòng)點(diǎn),∠AOP

的平分線交PA

于N

,求點(diǎn)N的軌跡.解1:MPxyAON設(shè)N(x,y),P(x0,y0),則由角平分線性質(zhì)得即∴點(diǎn)N軌跡是以(,0)為圓心、為半徑的圓.解2:設(shè)N(x,y),MPxyAON∴點(diǎn)N軌跡是以(,0)為圓心、為半徑的圓.例6.

已知定點(diǎn)A(3,0),P是圓上x2+y2=1上的動(dòng)點(diǎn),∠AOP

的平分線交PA

于N

,求點(diǎn)N的軌跡.則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論