版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省丹東33中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知點P(a+1,)關(guān)于原點的對稱點在第四象限,則a的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.2.我們研究過的圖形中,圓的任何一對平行切線的距離總是相等的,所以圓是“等寬曲線”.除了圓以外,還有一些幾何圖形也是“等寬曲線”,如勒洛三角形(如圖),它是分別以等邊三角形的每個頂點為圓心,以邊長為半徑,在另兩個頂點間畫一段圓弧,三段圓弧圍成的曲邊三角形.圖是等寬的勒洛三角形和圓形滾木的截面圖.圖圖有如下四個結(jié)論:①勒洛三角形是中心對稱圖形②圖中,點到上任意一點的距離都相等③圖中,勒洛三角形的周長與圓的周長相等④使用截面是勒洛三角形的滾木來搬運東西,會發(fā)生上下抖動上述結(jié)論中,所有正確結(jié)論的序號是()A.①② B.②③ C.②④ D.③④3.小紅拋擲一枚質(zhì)地均勻的骰子,骰子六個面分別刻有1到6的點數(shù),下列事件為必然事件的是()A.骰子向上一面的點數(shù)為偶數(shù) B.骰子向上一面的點數(shù)為3C.骰子向上一面的點數(shù)小于7 D.骰子向上一面的點數(shù)為64.已知P是△ABC的重心,且PE∥BC交AB于點E,BC=,則PE的長為().A. B. C. D.5.在中,是邊上的點,,則的長為()A. B. C. D.6.如圖,在平面直角坐標系中,正方形的頂點在坐標原點,點的坐標為,點在第二象限,且反比例函數(shù)的圖像經(jīng)過點,則的值是()A.-9 B.-8 C.-7 D.-67.在Rt△ABC中,∠C=90°,sinA=,則cosB的值等于()A. B. C. D.8.下列說法:①概率為0的事件不一定是不可能事件;②試驗次數(shù)越多,某情況發(fā)生的頻率越接近概率;③事件發(fā)生的概率與實驗次數(shù)無關(guān);④在拋擲圖釘?shù)脑囼炛嗅樇獬系母怕蕿椋硎?次這樣的試驗必有1次針尖朝上.其中正確的是()A.①② B.②③ C.①③ D.①④9.如圖,已知△ABC和△EDC是以點C為位似中心的位似圖形,且△ABC和△EDC的周長之比為1:2,點C的坐標為(﹣2,0),若點B的坐標為(﹣5,1),則點D的坐標為()A.(4,﹣2) B.(6,﹣2) C.(8,﹣2) D.(10,﹣2)10.下列汽車標志圖片中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知關(guān)于x的一元二次方程兩根是分別α和β則m=_____,α+β=_____.12.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.13.如圖所示的的方格紙中,如果想作格點與相似(相似比不能為1),則點坐標為___________.14.如圖,拋物線y=ax2與直線y=bx+c的兩個交點坐標分別為A(-2,4),B(1,1),則不等式ax2>bx+c的解集是_________.15.化簡:-2a2+(a2-b2)=______.16.如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是_____________cm.17.如圖,在?ABCD中,EF∥AB,DE:EA=2:3,EF=4,則CD的長為___________.18.如圖,已知直線l:y=﹣x+4分別與x軸、y軸交于點A,B,雙曲線(k>0,x>0)與直線l不相交,E為雙曲線上一動點,過點E作EG⊥x軸于點G,EF⊥y軸于點F,分別與直線l交于點C,D,且∠COD=45°,則k=_____.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖象交于點,且點的橫坐標為.過點作軸交反比例函數(shù)的圖象于點,連接.(1)求反比例函數(shù)的表達式.(2)求的面積.20.(6分)如圖,已知△ABC,∠B=90゜,AB=3,BC=6,動點P、Q同時從點B出發(fā),動點P沿BA以1個單位長度/秒的速度向點A移動,動點Q沿BC以2個單位長度/秒的速度向點C移動,運動時間為t秒.連接PQ,將△QBP繞點Q順時針旋轉(zhuǎn)90°得到△,設(shè)△與△ABC重合部分面積是S.(1)求證:PQ∥AC;(2)求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.21.(6分)如圖,在中,,,,動點從點出發(fā),沿方向勻速運動,速度為;同時,動點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停止運動.設(shè)點,運動的時間是.過點作于點,連接,.(1)為何值時,?(2)設(shè)四邊形的面積為,試求出與之間的關(guān)系式;(3)是否存在某一時刻,使得若存在,求出的值;若不存在,請說明理由;(4)當為何值時,?22.(8分)如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E,連結(jié)OE,CD=,∠ACB=30°.(1)求證:DE是⊙O的切線;(2)分別求AB,OE的長.23.(8分)閱讀材料:以下是我們教科書中的一段內(nèi)容,請仔細閱讀,并解答有關(guān)問題.公元前3世紀,古希臘學(xué)家阿基米德發(fā)現(xiàn):若杠桿上的兩物體與支點的距離與其重量成反比,則杠桿平衡,后來人們把它歸納為“杠桿原理”,通俗地說,杠桿原理為:阻力×阻力臂=動力×動力臂(問題解決)若工人師傅欲用撬棍動一塊大石頭,已知阻力和阻力臂不變,分別為1500N和0.4m.(1)動力F(N)與動力臂l(m)有怎樣的函數(shù)關(guān)系?當動力臂為1.5m時,撬動石頭需要多大的力?(2)若想使動力F(N)不超過題(1)中所用力的一半,則動力臂至少要加長多少?(數(shù)學(xué)思考)(3)請用數(shù)學(xué)知識解釋:我們使用棍,當阻力與阻力臂一定時,為什么動力臂越長越省力.24.(8分)如圖,AB是半圓O的直徑,C為半圓弧上一點,在AC上取一點D,使BC=CD,連結(jié)BD并延長交⊙O于E,連結(jié)AE,OE交AC于F.(1)求證:△AED是等腰直角三角形;(2)如圖1,已知⊙O的半徑為.①求的長;②若D為EB中點,求BC的長.(3)如圖2,若AF:FD=7:3,且BC=4,求⊙O的半徑.25.(10分)有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū),分別標有數(shù)字1,2,3,另有一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4(如圖所示),小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一個人轉(zhuǎn)動圓盤,另一人從口袋中摸出一個小球,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.(1)用畫樹狀圖或列表的方法求出小穎參加比賽的概率;(2)你認為該游戲公平嗎?請說明理由.26.(10分)如圖,⊙中,弦與相交于點,,連接.求證:⑴;⑵.
參考答案一、選擇題(每小題3分,共30分)1、C【解題分析】試題分析:∵P(,)關(guān)于原點對稱的點在第四象限,∴P點在第二象限,∴,,解得:,則a的取值范圍在數(shù)軸上表示正確的是.故選C.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組;3.關(guān)于原點對稱的點的坐標.2、B【分析】逐一對選項進行分析即可.【題目詳解】①勒洛三角形不是中心對稱圖形,故①錯誤;②圖中,點到上任意一點的距離都相等,故②正確;③圖中,設(shè)圓的半徑為r∴勒洛三角形的周長=圓的周長為∴勒洛三角形的周長與圓的周長相等,故③正確;④使用截面是勒洛三角形的滾木來搬運東西,不會發(fā)生上下抖動,故④錯誤故選B【題目點撥】本題主要考查中心對稱圖形,弧長公式等,掌握中心對稱圖形和弧長公式是解題的關(guān)鍵.3、C【分析】必然事件就是一定發(fā)生的事件,依據(jù)定義即可判斷.【題目詳解】A、骰子向上一面的點數(shù)為偶數(shù)是隨機事件,選項錯誤;B、骰子向上一面的點數(shù)為3是隨機事件,選項錯誤;C、骰子向上一面的點數(shù)小于7是必然事件,選項正確;D、骰子向上一面的點數(shù)為6是隨機事件,選項錯誤.故選:C.【題目點撥】本題考查了隨機事件與必然事件,熟練掌握必然事件的定義是解題的關(guān)鍵.4、A【分析】如圖,連接AP,延長AP交BC于D,根據(jù)重心的性質(zhì)可得點D為BC中點,AP=2PD,由PE//BC可得△AEP∽△ABD,根據(jù)相似三角形的性質(zhì)即可求出PE的長.【題目詳解】如圖,連接AP,延長AP交BC于D,∵點P為△ABC的重心,BC=,∴BD=BC=,AP=2PD,∴,∵PE//BC,∴△AEP∽△ABD,∴,∴PE===.故選:A.【題目點撥】本題考查三角形重心的性質(zhì)及相似三角形的判定與性質(zhì),三角形的重心是三角形三條中線的交點,重心到頂點的距離與重心到對邊中點的距離之比為2:1;正確作出輔助線,構(gòu)造相似三角形是解題關(guān)鍵.5、C【分析】先利用比例性質(zhì)得到AD:AB=3:4,再證明△ADE∽△ABC,然后利用相似比可計算出AC的長.【題目詳解】解:解:∵AD=9,BD=3,
∴AD:AB=9:12=3:4,
∵DE∥BC,
∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故選C.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形;在利用相似三角形的性質(zhì)時主要利用相似比計算線段的長.6、B【分析】作AD⊥x軸于D,CE⊥x軸于E,先通過證得△AOD≌△OCE得出AD=OE,OD=CE,設(shè)A(x,),則C(,-x),根據(jù)正方形的性質(zhì)求得對角線解得F的坐標,即可得出,解方程組求得k的值.【題目詳解】解:如圖,作軸于,軸于連接AC,BO,∵,∴∵,∴.在和中,∴∴.設(shè),則.∵和互相垂直平分,點的坐標為,∴交點的坐標為,∴,解得,∴,故選.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征,待定系數(shù)法求解析式,正方形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.7、B【解題分析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,則cosB=sinA=.故選B.點睛:本題考查了互余兩角三角函數(shù)的關(guān)系.在直角三角形中,互為余角的兩角的互余函數(shù)相等.8、B【分析】根據(jù)概率和頻率的概念對各選項逐一分析即可.【題目詳解】①概率為0的事件是不可能事件,①錯誤;②試驗次數(shù)越多,某情況發(fā)生的頻率越接近概率,故②正確;③事件發(fā)生的概率是客觀存在的,是確定的數(shù)值,故③正確;④根據(jù)概率的概念,④錯誤.故選:B【題目點撥】本題考查概率的意義,考查頻率與概率的關(guān)系,本題是一個概念辨析問題.9、A【分析】作BG⊥x軸于點G,DH⊥x軸于點H,根據(jù)位似圖形的概念得到△ABC∽△EDC,根據(jù)相似是三角形的性質(zhì)計算即可.【題目詳解】作BG⊥x軸于點G,DH⊥x軸于點H,則BG∥DH,∵△ABC和△EDC是以點C為位似中心的位似圖形,∴△ABC∽△EDC,∵△ABC和△EDC的周長之比為1:2,∴=,由題意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,則點D的坐標為為(4,﹣2),故選:A.【題目點撥】本題考查的是位似變換的性質(zhì),正確理解位似與相似的關(guān)系,記憶關(guān)于原點位似的兩個圖形對應(yīng)點坐標之間的關(guān)系是解題的關(guān)鍵.10、C【解題分析】根據(jù)軸對稱圖形和中心對稱圖形的性質(zhì)進行判斷即可.【題目詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,錯誤;B.是軸對稱圖形,不是中心對稱圖形,錯誤;C.既是軸對稱圖形,也是中心對稱圖形,正確;D.是軸對稱圖形,不是中心對稱圖形,錯誤;故答案為:C.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的問題,掌握軸對稱圖形和中心對稱圖形的性質(zhì)是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、-21【分析】首先根據(jù)一元二次方程的概念求出m的值,然后根據(jù)根與系數(shù)的關(guān)系即可得出答案.【題目詳解】∵是一元二次方程,,解得,.兩根是分別α和β,,故答案為:-2,1.【題目點撥】本題主要考查一元二次方程,掌握一元二次方程的概念及根與系數(shù)的關(guān)系是解題的關(guān)鍵.12、(3,0)【分析】把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【題目詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【題目點撥】本題考查了點的坐標與拋物線解析式的關(guān)系,拋物線與x軸交點坐標的求法.本題也可以用根與系數(shù)關(guān)系直接求解.13、(5,2)或(4,4).【分析】要求△ABC與△OAB相似,因為相似比不為1,由三邊對應(yīng)相等的兩三角形全等,知△OAB的邊AB不能與△ABC的邊AB對應(yīng),則AB與AC對應(yīng)或者AB與BC對應(yīng)并且此時AC或者BC是斜邊,分兩種情況分析即可.【題目詳解】解:根據(jù)題意得:OA=1,OB=2,AB=,∴當AB與AC對應(yīng)時,有或者,∴AC=或AC=5,∵C在格點上,∴AC=(不合題意),則AC=5,如圖:∴C點坐標為(4,4)同理當AB與BC對應(yīng)時,可求得BC=或者BC=5,也是只有后者符合題意,如圖:此時C點坐標為(5,2)∴C點坐標為(5,2)或(4,4).故答案為:(5,2)或(4,4).【題目點撥】本題結(jié)合坐標系,重點考查了相似三角形的判定的理解及運用.14、x<-2或x>1【分析】根據(jù)圖形拋物線與直線的兩個交點情況可知,不等式的解集為拋物線的圖象在直線圖象的上方對應(yīng)的自變量的取值范圍.【題目詳解】如圖所示:
∵拋物線與直線的兩個交點坐標分別為,
∴二次函數(shù)圖象在一次函數(shù)圖象上方時,即不等式的解集為:或.
故答案為:或.【題目點撥】本題主要考查了二次函數(shù)與不等式組.解答此題時,利用了圖象上的點的坐標特征來解不等式.15、-a2-b2【分析】去括號合并同類項即可.【題目詳解】原式=-2a2+a2-b2=-a2-b2.故答案為:-a2-b2.【題目點撥】本題考查了整式的加減,即去括號合并同類項.去括號法則:當括號前是“+”號時,去掉括號和前面的“+”號,括號內(nèi)各項的符號都不變號;當括號前是“-”號時,去掉括號和前面的“-”號,括號內(nèi)各項的符號都要變號.16、10【分析】本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【題目詳解】如圖,設(shè)圓心為O,弦為AB,切點為C.如圖所示.則AB=8cm,CD=2cm.連接OC,交AB于D點.連接OA.∵尺的對邊平行,光盤與外邊緣相切,∴OC⊥AB.∴AD=4cm.設(shè)半徑為Rcm,則R2=42+(R?2)2,解得R=5,∴該光盤的直徑是10cm.故答案為:10.【題目點撥】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學(xué)模型是關(guān)鍵.17、1.【題目詳解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=1,∵在?ABCD中AB=CD.∴CD=1.故答案為:1【題目點撥】本題考查①相似三角形的判定;②相似三角形的性質(zhì);③平行四邊形的性質(zhì).18、1【解題分析】證明△ODA∽△CDO,則OD2=CD?DA,而則OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即可求解.【題目詳解】解:點A、B的坐標分別為(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD?DA,設(shè)點E(m,n),則點D(4﹣n,n),點C(m,4﹣m),則OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即2n2﹣1n+16=(m+n﹣4)×n,解得:mn=1=k,故答案為1.【題目點撥】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,涉及到三角形相似、一次函數(shù)等知識點,關(guān)鍵是通過設(shè)定點E的坐標,確定相關(guān)線段的長度,進而求解.三、解答題(共66分)19、(1);(2)【分析】(1)首先將點B的橫坐標代入一次函數(shù),得出其坐標,然后代入反比例函數(shù),即可得出解析式;(2)首先求出點A的坐標,然后分別求出AC、BD,即可求得面積.【題目詳解】一次函數(shù)的圖象過點,且點的橫坐標為,,點的坐標為.點在反比例函數(shù)的圖象上,,反比例函數(shù)的表達式為;一次函數(shù)的圖象與軸交于點,當時,,點的坐標為,軸,點的縱坐標與點的縱坐標相同,是2,點在反比例函數(shù)的圖象上,當時,,解得,過作于,則,【題目點撥】此題主要考查一次函數(shù)與反比例函數(shù)綜合應(yīng)用,熟練掌握,即可解題.20、(1)見解析;(2)【分析】(1)由題意可得出,繼而可證明△BPQ∽△BAC,從而證明結(jié)論;(2)由題意得出QP`⊥AC,分三種情況利用相似三角形的判定及性質(zhì)討論計算.【題目詳解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC當0<t≤時,S=t2當<t≤1時:設(shè)QP`交AC于點MP`B`交AC于點N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴當1<t≤3時設(shè)QB`交AC于點H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴綜合上所述:【題目點撥】本題是一道關(guān)于相似的綜合題目,難度較大,涉及的知識點有相似三角形的判定及性質(zhì)、勾股定理、三角形面積公式、旋轉(zhuǎn)的性質(zhì)等,需要有數(shù)形結(jié)合的能力以及較強的計算能力.21、(1)當t=時,DE⊥AC;(2);(3)當t=時,;(4)t=時,=【分析】(1)若DE⊥AC,則∠EDA=90°,易證△ADE∽△ABC,進而列出關(guān)于t的比例式,即可求解;(2)由△CDF∽△CAB,得CF=,BF=8﹣,進而用割補法得到與之間的關(guān)系式,進而即可得到答案;(3)根據(jù),列出關(guān)于t的方程,即可求解;(4)過點E作EM⊥AC于點M,易證△AEM∽△ACB,從而得EM=,AM=,進而得DM=,根據(jù)當DM=ME時,=,列出關(guān)于t的方程,即可求解.【題目詳解】(1)∵∠B=,AB=6cm,BC=8cm,∴AC=10cm,若DE⊥AC,則∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴,即,∴t=,答:當t=時,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴,即,∴CF=,∴BF=8﹣,∴;(3)若存在某一時刻t,使得,根據(jù)題意得:,解得:,答:當t=時,;(4)過點E作EM⊥AC于點M,則△AEM∽△ACB∴=,∴,∴EM=,AM=,∴DM=10-2t-=,在Rt△DEM中,當DM=ME時,=,∴,解得:t=即:當t=時,=.【題目點撥】本題主要考查相似三角形的判定和性質(zhì)定理綜合,通過相似三角形的性質(zhì),用代數(shù)式表示相關(guān)線段,進而列出方程,是解題的關(guān)鍵.22、(1)證明見解析;(2)AB=2,OE=.【分析】(1)根據(jù)AB是直徑即可求得∠ADB=90°,再根據(jù)題意可求出OD⊥DE,即得出結(jié)論;(2)根據(jù)三角函數(shù)的定義,即可求得BC,進而得到AB,再在Rt△CDE中,根據(jù)直角三角形的性質(zhì),可求得DE,再由勾股定理求出OE即可.【題目詳解】(1)連接BD,OD.∵AB是直徑,∴∠ADB=90°.又∵AB=BC,∴AD=CD.∵OA=OB,∴OD∥BC.∵DE⊥BC,∴∠DEC=90°.∵OD∥BC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切線.(2)在Rt△CBD中CD,∠ACB=30°,∴BC2,∴AB=2,∴ODAB=1.在Rt△CDE中,CD,∠ACB=30°,∴DECD.在Rt△ODE中,OE.【題目點撥】本題考查了切線的判定、勾股定理、圓周角定理以及解直角三角形,是一道綜合題,難度不大.23、(1)400N;(2)1.5米;(3)見解析【分析】(1)根據(jù)杠桿定律求得函數(shù)的解析式后代入l=1.5求得力的大小即可;(2)將求得的函數(shù)解析式變形后求得動力臂的大小,然后即可求得增加的長度;(3)利用反比例函數(shù)的知識結(jié)合杠桿定律進行說明即可.【題目詳解】試題解析:(1)、根據(jù)“杠桿定律”有FL=1500×0.4,∴函數(shù)的解析式為F=,當L=1.5時,F(xiàn)==400,因此,撬動石頭需要400N的力;(2)、由(1)知FL=600,∴函數(shù)解析式可以表示為:L=,當F=400×=200時,L=3,3﹣1.5=1.5(m),因此若用力不超過400N的一半,則動力臂至少要加長1.5米;(3)因為撬棍工作原理遵循“杠桿定律”,當阻力與阻力臂一定時,其乘積為常數(shù),設(shè)其為k,則動力F與動力臂L的函數(shù)關(guān)系式為F=,根據(jù)反比例函數(shù)的性質(zhì)可知,動力F隨動力臂l的增大而減小,所以動力臂越長越省力.考點:反比例函數(shù)的應(yīng)用24、(1)見解析;(2)①;②;(3)【分析】(1)由已知可得△BCD是等腰直角三角形,所以∠CBD=∠EAD=45°,因為∠AEB=90°可證△AED是等腰直角三角形;(2)①已知可得∠EAD=45°,∠EOC=90°,則△EOC是等腰直角三角形,所以CE的弧長=×2×π×=;②由已知可得ED=BD,在Rt△ABE中,(2)2=AE2+(2AE)2,所以AE=2,AD=2,易證△AED∽△BCD,所以BC=;(3)由已知可得AF=AD,過點E作EG⊥AD于G,EG=AD,GF=AD,tan∠EFG=,得出FO=r,在Rt△COF中,F(xiàn)C=r,EF=r,在Rr△EFG中,由勾股定理,求出AD=r,AF=r,所以AC=AF+FC=,CD=BC=4,AC=4+AD,可得r=4+r,解出r即可.【題目詳解】解:(1)∵BC=CD,AB是直徑,∴△BCD是等腰直角三角形,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州2025年江蘇蘇州幼兒師范高等專科學(xué)校招聘專任教師及專職輔導(dǎo)員8人筆試歷年典型考點(頻考版試卷)附帶答案詳解版
- 非公開募集基金參與航空航天產(chǎn)業(yè)投資考核試卷
- 高效學(xué)習(xí)方法與記憶力提升考核試卷
- 非傳統(tǒng)電力技術(shù)在工業(yè)領(lǐng)域中的應(yīng)用考核試卷
- 養(yǎng)老醫(yī)療資源整合策略-洞察分析
- 聚合纖維在環(huán)保材料領(lǐng)域的應(yīng)用考核試卷
- 鍋爐及輔助設(shè)備在工業(yè)互聯(lián)網(wǎng)戰(zhàn)略實施中的關(guān)鍵作用分析報告考核試卷
- 陶瓷企業(yè)商業(yè)秘密保護考核試卷
- 園藝機械節(jié)能技術(shù)創(chuàng)新-洞察分析
- 游戲化教學(xué)在語言學(xué)校的實踐-洞察分析
- 體檢營銷話術(shù)與技巧培訓(xùn)
- TSG 07-2019電梯安裝修理維護質(zhì)量保證手冊程序文件制度文件表單一整套
- 養(yǎng)殖場巡查制度模板
- 建設(shè)工程造價案例分析-形成性考核2(占形考總分25%)-國開(SC)-參考資料
- 《期貨市場發(fā)展之》課件
- 酒店旅游業(yè)OTA平臺整合營銷推廣策略
- 淋巴水腫康復(fù)治療技術(shù)
- 2024年國家公務(wù)員考試《申論》真題(副省級)及參考答案
- 零星維修工程 投標方案(技術(shù)方案)
- 10KV電力配電工程施工方案
- 茶葉采購合同范本電子版
評論
0/150
提交評論