版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年廣東省清遠市高職單招數(shù)學(xué)摸底卷題庫(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.已知α為第二象限角,點P(x,√5)為其終邊上的一點,且cosα=√2x/4,那么x=()
A.√3B.±√3C.-√2D.-√3
2.已知向量a=(2,t),b=(1,2),若a∥b,則t=()
A.t=-4B.t=-1C.t=1D.t=4
3.不等式x2-3x-4≤0的解集是()
A.[-4,1]B.[-1,4]C.(-∞,-l]U[4,+∞)D.(-∞,-4]U[1,+∞)
4.圓x2+y2-4x+4y+6=0截直線x-y-5=0所得弦長等于()
A.√6B.1C.5D.5√2/2
5.不等式(x-1)(x-2)<2的解集是()
A.{x∣x<3}B.{x∣x<0}C.{x∣0<x3}
6.已知cosα=1/3,且α是第四象限的角,則sin(a+2Π)=()
A.-1/3B.-2/3C.-2√2/3D.2/3
7.設(shè)a=log?2,b=log?2,c=log?3,則
A.a>c>bB.b>c>aC.c>b>aD.c>a>b
8.下列說法中,正確的個數(shù)是()①如果兩條平行直線中的一條和一個平面相交,那么另一條直線也和這個平面相交;②一條直線和另一條直線平行,它就和經(jīng)過另一條直線的任何平面都平行;③經(jīng)過兩條異面直線中的一條直線,有一個平面與另一條直線平行;④兩條相交直線,其中一條直線與一個平面平行,則另一條直線一定與這個平面平行.
A.0B.1C.2D.3
9.在“綠水青山就是金山銀山”這句話中任選一個漢字,這個字是“山”的概率為()
A.3/10B.1/10C.1/9D.1/8
10.在△ABC中,內(nèi)角A,B滿足sinAsinB=cosAcosB,則△ABC是()
A.等邊三角形B.鈍角三角形C.非等邊銳角三角形D.直角三角形
11.已知圓x2+y2=a與直線z+y-2=0相切,則a=()
A.2√2B.2C.3D.4
12.拋物線y2=4x上的一點P至焦點F的距離為3,則P到軸y的距離為()
A.4B.3C.2D.1
13.設(shè)lg2=m,lg3=n,則lg12可表示為()
A.m2nB.2m+nC.2m/nD.mn2
14.已知頂點在原點,準線方程x=4的拋物線標準方程()
A.y2=-16xB.y2=8xC.y2=16xD.y2=-8x
15.已知點A(1,1)和點B(5,5),則線段AB的垂直平分線方程為()
A.x+y-6=0B.2x+y一6=0C.z+y+6=0D.4x+y+6=0
16.如果a?,a?,…,a?為各項都大于零的等差數(shù)列,公差d≠0,則().
A.a?a?>a?a?B.a?a?<a?a?C.a?+a?<a?+a?D.a?a?=a?a?
17.函數(shù)2y=-x2x+2()
A.有最小值1B.有最小值3C.有最大值1D.有最大值3
18.拋物線y2=8x的焦點為F,拋物線上有一點P的橫坐標是1,則點P到焦點F的距離是()
A.2√2B.2C.3D.4
19.不在3x+2y<6表示的平面區(qū)域內(nèi)的點是()
A.(0,0)B.(1,1)C.(0,2)D.(2,0)
20.同時擲兩枚骰子,所得點數(shù)之積為12的概率為()
A.1/12B.1/4C.1/9D.1/6
21.若y=3x+4表示一條直線,則直線斜率為()
A.-3B.3C.-4D.4
22.傾斜角為60°,且在y軸上截距為?3的直線方程是()
A.√3x-y+3=0B.√3x-y-3=0C.3x-√y+3=0D.x-√3y-3=0
23.函數(shù)y=1/2sin2x的最小正周期是()
A.4ΠB.Π/4C.2ΠD.Π
24.直線y=x+1與圓x2+y2=1的位置關(guān)系是()
A.相切B.相交但直線不過圓心C.直線過圓心D.相離
25.X>3是X>4的()
A.充分條件B.必要條件C.充要條件D.即不充分也不必要條件
26.設(shè)f(x)=2x+5,則f(2)=()
A.7B.8C.9D.10
27.已知x,2x+2,3x+3是一個等比數(shù)列的前三項,則x的值為()
A.-4或-1B.-4C.-1D.4或1
28.已知α∈(Π/2,Π),cos(Π-α)=√3/2,則tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
29.設(shè)集合A={1,2,3},B={1,2,4}則A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
30.過點A(-1,1)且與直線l:x-2y+6=0垂直的直線方程為()
A.2x-y-1=0B.x-2y-1=0C.x+2y+1=0D.2x+y+1=0
31.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的個數(shù)是()
A.6B.7C.8D.9
32.某市教委為配合教育部公布高考改革新方案,擬定在B中學(xué)生進行調(diào)研,廣泛征求高三年級學(xué)生的意見。B中學(xué)高三年級共有700名學(xué)生,其中理科生500人,文科生200人,現(xiàn)采用分層抽樣的方法從中抽取14名學(xué)生參加調(diào)研,則抽取的理科生的人數(shù)為()
A.2B.4C.5D.10
33.下列各角中,與330°的終邊相同的是()
A.570°B.150°C.?150°D.?390°
34.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要條件B.充分而不必要條件C.充分必要條件D.既不充分也不必要條件
35.袋中有除顏色外完全相同的2紅球,2個白球,從袋中摸出兩球,則兩個都是紅球的概率是()
A.1/6B.1/3C.1/2D.2/3
36.已知直線l的傾斜角是45,在軸上的截距是2,則直線l的方程是()
A.x-y-2=0B.x一y+2=0C.z+y+2=0D.x+y-2=0
37.已知向量a=(1,1),b=(0,2),則下列結(jié)論正確的是()
A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3
38.下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是()
A.y=2xB.y=2xC.y=x2/2D.y=-x/3
39.若等差數(shù)列前兩項為-3,3,則數(shù)列的公差是多少().
A.-3B.3C.0D.6
40.“x<1”是”“|x|>1”的()
A.必要不充分條件B.充分不必要條件C.充分必要條件D.既不充分也不必要條件
41.已知等差數(shù)列{an}的公差為2,若a?,a?,a?成等比數(shù)列,則a?=().
A.-4B.-6C.-8D.-10
42.某大學(xué)數(shù)學(xué)系共有本科生5000人,其中一、二、三四年級的學(xué)生比為4:3:2:1,用分層抽樣的方法抽取一個容量為200人的樣本,則應(yīng)抽取二年級的學(xué)生人數(shù)為()
A.80B.40C.60D.20
43.A(-1,4),B(5,2),線段AB的垂直平分線的方程是()
A.3x-y-3=0B.3x+y-9=0C.3x-y-10=0D.3x+y-8-0
44.過點P(2,-1)且與直線x+y-2=0平行的直線方程是()
A.x-y-1=0B.x+y+1=0C.x-y+1=0D.x+y-1=0
45.“θ是銳角”是“sinθ>0”的()
A.充分不必條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件
46.設(shè)奇函數(shù)f(x)是定義在R上的增函數(shù),且f(-1)=2,且滿足f(x2-2x+2)≥一2,則x的取值范圍是()
A.?B.(2,+∞)C.RD.(2,+∞)D∪(-∞,0)
47.cos78°*cos18°+sin18°sin102°=()
A.-√3/2B.√3/2C.-1/2D.1/2
48.有2名男生和2名女生,李老師隨機地按每兩人一桌為他們排座位,一男一女排在一起的概率為()
A.2/3B.1/2C.1/3D.1/4
49."x<0"是“l(fā)n(x+1)<0”的()
A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
50.若函數(shù)f(x)、g(x)的定義域和值域都是R,則f(x)
A.存在一個x?∈R,使得f(x?)
B.有無窮多個實數(shù)x,使f(x)
C.對R中任意x,都有f(x)+1/2
D.不存在實數(shù)x,使得f(x)≥g(x)
二、填空題(20題)51.已知向量a=(3,4),b=(5,12),a與b夾角的余弦值為________。
52.若等邊三角形ABC的邊長為2,則,AB·BC=________。
53.直線x+2y+1=0被圓(x一2)2+(y-1)2=25所截得的弦長為______。
54.甲有100,50,5元三張紙幣,乙有20,10元兩張紙幣,兩人各取一張自己的紙幣,比較紙幣大小,則甲的紙幣比乙的紙幣小的概率=_________。
55.將一個容量為m的樣本分成3組,已知第一組的頻數(shù)為8,第2、3組的頻率為0.15和0.45,則m=________。
56.已知A(1,3),B(5,1),則線段AB的中點坐標為_________;
57.已知數(shù)據(jù)x?,x?,x?,x?,x?,的平均數(shù)為80,則數(shù)據(jù)x?+1,x?+2,x?+3,x?+4,x?+5的平均數(shù)為________。
58.已知函數(shù)y=2x+t經(jīng)過點P(1,4),則t=_________。
59.圓x2+2x+y2-4y-1=0的圓心到直線2x-y+1=0的距離是________。
60.函數(shù)y=(cos2x-sin2x)2的最小正周期T=________。
61.已知平面向量a=(1,2),b=(-2,m),且a⊥b,則a+b=_________。
62.f(x)是定義在(0,+∞)上的增函數(shù),則不等式f(x)>f(2x-3)的解集是________。
63.已知平面向量a=(1,2),=(一2,1),則a與b的夾角是________。
64.等比數(shù)列{an}中,a?=1/3,a?=3/16,則a?=________。
65.雙曲線x2/4-y2=1的漸近線方程為__________。
66.若數(shù)列{an}的前n項和為Sn=n2+n,則an=________。
67.首項a?=2,公差d=3的等差數(shù)列前10項之和為__________。.
68.已知cos(Π-a)=1/2,則cos2a=_________。
69.不等式|8-2x|≤3的解集為________。
70.過點(2,0)且與圓(x-1)2+(y+1)2=2相切的直線方程為________。
三、計算題(10題)71.已知三個數(shù)成等差數(shù)列,它們的和為9,若第三個數(shù)加上4后,新的三個數(shù)成等比數(shù)列,求原來的三個數(shù)。
72.圓(x-1)2+(x-2)2=4上的點到直線3x-4y+20=0的最遠距離是________。
73.數(shù)列{an}為等差數(shù)列,a?+a?+a?=6,a?+a?=25,(1)求{an}的通項公式;(2)若bn=a?n,求{bn}前n項和Sn;
74.求函數(shù)y=cos2x+sinxcosx-1/2的最大值。
75.解下列不等式:x2≤9;
76.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
77.求證sin2α+sin2β?sin2αsin2β+cos2αcos22β=1;
78.在△ABC中,角A,B,C所對應(yīng)的邊分別是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面積
79.我國是一個缺水的國家,節(jié)約用水,人人有責;某市為了加強公民的節(jié)約用水意識,采用分段計費的方法A)月用水量不超過10m3的,按2元/m3計費;月用水量超過10m3的,其中10m3按2元/m3計費,超出部分按2.5元/m3計費。B)污水處理費一律按1元/m3計費。設(shè)用戶用水量為xm3,應(yīng)交水費為y元(1)求y與x的函數(shù)關(guān)系式(2)張大爺家10月份繳水費37元,問張大爺10月份用了多少水量?
80.已知sinα=1/3,則cos2α=________。
參考答案
1.D
2.Da(2,t),b(1,2),因為a∥b,所以2*t-1*t=0,t=4,故選D.考點:平面向量共線.
3.B
4.A由圓x2+y2-4x+4y+6=0,易得圓心為(2,-2),半徑為√2.圓心(2,-2)到直線x-y-5=0的距離為√2/2.利用幾何性質(zhì),則弦長為2√(√2)2-(√2/2)2=√6??键c:和圓有關(guān)的弦長問題.感悟提高:計算直線被圓截得弦長常用幾何法,利用圓心到直線的距離,弦長的一半,及半徑構(gòu)成直角三角形計算,即公式d2+(AB/2)2=r2,d是圓到直線的距離,r是圓半徑,AB是弦長.
5.C[答案]C[解析]講解:不等式化簡為x2-3x<0,解得答案為0<x<3
6.C
7.D
8.C
9.A
10.D
11.C
12.C
13.B
14.A
15.A
16.B[解析]講解:等差數(shù)列,a?a?=a?2+7da?,a?a?=a?2+7da?+12d2,所以a?a?<a?a?
17.D
18.C
19.D
20.C
21.B[解析]講解:直線斜率的考察,基本形式中x的系數(shù)就是直線的斜率,選B
22.B
23.D
24.B圓x2+y2=1的圓心坐標為(0,0),半徑長為1,則圓心到直線y=x+1的距離d=1/√2=√2/2,因為0<√2/2<1,所以直線y=x+1與圓x2+y2=1相交但直線不過圓心.考點:直線與圓的位置關(guān)系.
25.B
26.C[解析]講解:函數(shù)求值問題,將x=2帶入求得,f(2)=2×2+5=9,選C
27.B
28.A
29.D
30.D
31.C[解析]講解:集合子集的考察,首先求A∩B={0,2,4}有三個元素,則子集的個數(shù)為2^3=8,選C
32.D分層抽樣就是按比例抽樣,由題意得:抽取的理科生人數(shù)為:14/700*500=10選D.考點:分層抽樣.
33.D[解析]講解:考察終邊相同的角,終邊相同則相差整數(shù)倍個360°,選D
34.B[解析]講解:解不等式,由|x-1|<2得x?(-1,3),由x(x-3)<0得x?(0,3),后者能推出前者,前者推不出后者,所以是必要不充分條件。
35.A
36.A
37.B
38.Ay=2x既是增函數(shù)又是奇函數(shù);y=1/x既是減函數(shù)又是奇函數(shù);y=1/2x2是偶函數(shù),且在(-∞,0)上為減函數(shù),在[0,+∞)上為增函數(shù);y=-x/3既是減函數(shù)又是奇函數(shù),故選A.考點:函數(shù)的奇偶性.感悟提高:對常見的一次函數(shù)、二次函數(shù)、反比例函數(shù),可根據(jù)圖像的特點判斷其單調(diào)性;對于函數(shù)的奇偶性,則可依據(jù)其定義來判斷。首先看函數(shù)的定義域是否關(guān)于原點對稱,如果定義域不關(guān)于原點對稱,則函數(shù)不具有奇偶性;如果定義域關(guān)于原點對稱,再判斷f(-x)=f(x)(偶函數(shù));f(-x)=-f(x)(奇函數(shù))
39.D[解析]講解:考察等差數(shù)列的性質(zhì),公差為后一項與前一項只差,所以公差為d=3-(-3)=6
40.B
41.B[解析]講解:等差數(shù)列中a?=a?+2d,a?=a?+3d,a?,a?,a?成等差數(shù)列,所以(a?+2d)2=a?(a?+3d),解得a?=-8,a?=-6
42.C
43.A
44.D可利用直線平行的關(guān)系求解,與直線Ax+By+C=0平行的直線方程可表示為:Ax+By+D=0.設(shè)所求直線方程為x+y+D=0,代入P(2,1)解得D=-1,所以所求的直線方程為:x+y-1=0,故選D.考點:直線方程求解.
45.A由sinθ>0,知θ為第一,三象限角或y軸正半軸上的角,選A!
46.C
47.D
48.A
49.B[解析]講解:由ln(x+1)<0解得-1<x<0;然而x<0不能推出-1<x
50.D
51.63/65
52.-2
53.4√5
54.1/3
55.20
56.(3,2)
57.83
58.2
59.8
60.Π/2
61.(-1,3)
62.(3/2,3)
63.90°
64.4/9
65.y=±2x
66.2n
67.155
68.-1/2
69.[5/2,11/2]
70.x+y-2=0
71.解:設(shè)原來三個數(shù)為a-d,a,a+d,則(a-d)+a+(a+d)=9所以3a=9,a=3因為三個數(shù)為3-d,3,3+d又因為3-d,3,7+d成等比數(shù)列所以(3-d)(7+d)=32所以d=2或d=-6①當d=2時,原來這三個數(shù)為1,3,5②當d=-6時,原來三個數(shù)為9,3,-3
72.5
73.解:(1)由題得3a?;+3d=6,2a?+9d=25,解得a?=-1,d=3,故an=a?+(n-1)d=-1+(n-1)x3=3n-4。(2)因為:bn=a?n=3×2n-4=6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年海南省三亞市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2023年山西省臨汾市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年短視頻內(nèi)容創(chuàng)作與版權(quán)許可合同
- 2024沙場資源綜合利用開發(fā)承包合同3篇
- 2024年餐飲投資合伙合同細則一
- 2024校園活動策劃與實施服務(wù)合同
- 2024年金融科技產(chǎn)品定制開發(fā)服務(wù)協(xié)議3篇
- 2024年金融機構(gòu)間借款保證合同書2篇
- 2023-2024年中級經(jīng)濟師之中級經(jīng)濟師經(jīng)濟基礎(chǔ)知識試題(附答案)
- 2023-2024年國家電網(wǎng)招聘之經(jīng)濟學(xué)類試題及答案二
- 超聲診斷學(xué)-乳腺超聲診斷
- 管工初賽實操
- 門診病歷書寫模板全
- 汽車離合器設(shè)計畢業(yè)設(shè)計(論文)
- 2023年房屋租賃管理模板
- 液壓與氣壓傳動中職PPT完整全套教學(xué)課件
- 國開大學(xué)2023年01月11067《知識產(chǎn)權(quán)法》期末考試答案
- 全部編版四年級語文下生字讀音、音序、偏旁及組詞
- 藥物的不良反應(yīng)
- 電氣控制及PLC課程設(shè)計報告
- 直接打印800字作文紙
評論
0/150
提交評論