![氫能平準(zhǔn)化成本分析-16正式版_第1頁(yè)](http://file4.renrendoc.com/view/8df9f962624c958009f2b2d9a40f5550/8df9f962624c958009f2b2d9a40f55501.gif)
![氫能平準(zhǔn)化成本分析-16正式版_第2頁(yè)](http://file4.renrendoc.com/view/8df9f962624c958009f2b2d9a40f5550/8df9f962624c958009f2b2d9a40f55502.gif)
![氫能平準(zhǔn)化成本分析-16正式版_第3頁(yè)](http://file4.renrendoc.com/view/8df9f962624c958009f2b2d9a40f5550/8df9f962624c958009f2b2d9a40f55503.gif)
![氫能平準(zhǔn)化成本分析-16正式版_第4頁(yè)](http://file4.renrendoc.com/view/8df9f962624c958009f2b2d9a40f5550/8df9f962624c958009f2b2d9a40f55504.gif)
![氫能平準(zhǔn)化成本分析-16正式版_第5頁(yè)](http://file4.renrendoc.com/view/8df9f962624c958009f2b2d9a40f5550/8df9f962624c958009f2b2d9a40f55505.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
JUNE 2021
LAZARD’SLEVELIZEDCOSTOFHYDROGENANALYSIS
LAZARD’S LEVELIZED COST OF HYDROGEN ANALYSIS
Lazard’sLevelizedCostofHydrogenAnalysis—ExecutiveSummary
Overviewof
Analysis
OverviewofHydrogenProductionandApplications
CostAnalysis
LazardhasundertakenananalysisoftheLevelizedCostofHydrogen(“LCOH”)inanefforttoprovidegreaterclaritytoIndustryparticipantsonthepotentiallydisruptiveroleofhydrogenacrossavarietyofeconomicsectors.OurLCOHbuildsupon,andrelatesto,ourannualLevelizedCostofEnergy(“LCOE”)andLevelizedCostofStorage(“LCOS”)studies.Giventhisbreadth,wehavedecidedtofocustheanalysisonthefollowingkeytopics:
Anoverviewofthevariousmethodsforproducinghydrogenandvariousapplicationsofhydrogenacrosseconomicsectors
AdiscussionofFAQspertainingtohydrogengivenitsrelativelynascentpresenceacrossmosteconomicsectors
Alevelizedcostanalysisofgreenhydrogen(i.e.,hydrogenproducedusingwaterandrenewableenergy)basedontwoprimaryelectrolyzertechnologiesandanillustrativesetofelectrolyzercapacities
OuranalysisintentionallyfocusesonakeysubsetofassumptionsforcalculatingtheLCOH.Theadditionalfactorslistedbelowhavebeenintentionallyexcludedbutwouldalsohaveanimpactonthedeliveredcostofgreenhydrogen:
Conversiontootherstatesand/oradditionalpurificationfortheproductionofotherchemicals(i.e.,liquefaction,productionofammonia,methanol,etc.)
Compressionand/orstoragecosts,whetheron-oroff-site
Transmission,distributionandtransportationcosts(e.g.,pipeline,truck,ship,etc.)
Additionalinvestmentand/orretrofittingofend-useinfrastructure/equipmentfortheuseofhydrogenvs.theoriginalfuelsource
Hydrogeniscurrentlyproducedprimarilyfromfossilfuelsusingsteam-methanereformingandmethanesplittingprocesses(i.e.,“gray”hydrogen)
Avarietyofadditionalprocessesareavailabletoproducehydrogenfromelectricityandwater,whichareatvaryingdegreesofdevelopmentandcommercialviability
Givenitsversatilityasanenergycarrier,hydrogenhasthepotentialtobeusedacrossindustrialprocesses,powergenerationandtransportation,creatingapotentialpathfordecarbonizingenergy-intensiveindustrieswherecurrenttechnologies/alternativesarenotpresentlyviable
Greenhydrogeniscurrentlymoreexpensivethantheconventionalfuelsorhydrogenitwoulddisplace—theintentofthiscostanalysisistobenchmarktheLCOHofgreenhydrogenona$/kgbasissuchthatreadersmayconverttotheequivalentcostofagivenenduseofinterest(e.g.,asfeedstockforammoniaproduction,displacingnaturalgasinapowerplant,etc.)
Applicationswhichrequireminimaladditionalsteps(e.g.,conversion,storage,transportation,etc.)toreachtheenduserwillachievecostcompetitivenesssoonerthanthosethatdonot
Thisdynamicisfurtheramplifiedtotheextentthatendusesrequireretrofittingequipmenttoutilizehydrogenvs.theconventionalalternatives
Electricityrepresents~30%–60%ofthecosttoproducehydrogenfromelectrolyzerswithacapacityof20+MW—theLCOHisthereforehighlydependentonthecostoftheavailablesourcesofelectricity
Thenext-mostsignificantdriveroftheLCOHisthecostoftheelectrolyzer,whichisexpectedtodecreaseasaresultofrapidgrowthinindustryscaleandtechnologicaladvancement
Inassessingthecostprofileofgreenhydrogen,therelativecostpositionofgreenhydrogenascomparedtoconventionalfuelsorgrayhydrogenisanobviouscorecomponentoftheanalysisasistherelevantusecasebeingcompared
Acostofcarbon,oravoidanceofsuchcosts,isnotincludedintheLCOHnoraregovernmentsupportmechanisms—bothofthesefactorscouldbeimpactfultoanycost/projectanalysis
Note:
Lazard’sLCOHanalysisisconductedwithsupportfromRolandBerger.Thisanalysisisillustrativeinnatureandshouldnotbeconsideredasabenchmarkforanygivenproject.
1
Copyright2021Lazard
Thisanalysisshouldnotbeconsideredasabasisfromwhichtomakeinvestment,regulatoryorstrategicdecisionsorotherwise.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
I OverviewofHydrogenProductionandApplications
I OVERVIEW OF HYDROGEN PRODUCTION AND APPLICATIONS
LeadingProcessesforHydrogenProduction
Hydrogenhashistoricallybeenproducedprimarilythroughtheuseoffossilfuels;however,improvementsinthecosteffectivenessofrenewableenergyandelectrolyzertechnologycreateapathforeconomicallyviablegreenhydrogen
ByproductsProcessFeedstock
FossilFuels
NuclearEnergy
Water(H2O)
Water(H2O)
Thermochemical
High-Temperature
Steam-Methane
MethaneSplitting
Reforming
Splitting
SteamElectrolysis
CarbonDioxide
(CO2)Capture
andStorage
CarbonDioxide
Carbon
Oxygen(O2)
Oxygen(O2)
(CO2)
Monoxide(CO)
GrayHydrogen
BlueHydrogen
Yellow
Hydrogen
Notes
Notes
Renewable
Energy
Water(H2O)
Low-Temperature
Electrolysis
Oxygen(O2)
GreenHydrogen
Notes
Steamreforminginvolvesinjectingsteamintonaturalgas,producing“gray”hydrogenandCO2
SubsequentCO2captureandstorageproduces“blue”hydrogen
Methanesplittingutilizesahigh-temperatureplasmatosplitnaturalgasinto“blue”hydrogenandcarbonmonoxide
Thermochemicalsplittingutilizesahigh-temperatureprocesstoproduce“yellow”hydrogenandoxygen
High-temperaturesteamelectrolysisutilizesanelectriccurrentandhigh-temperaturesteamtoproduce“yellow”hydrogenandoxygen
Low-temperatureelectrolysisisanelectrochemicalprocessinwhichacurrentisappliedtowatertoproducegreenhydrogenandoxygen
Alkalineandpolymerelectrolytemembrane(“PEM”)electrolyzersarecurrentlytheprimarytechnologiesutilizedforlow-
temperatureelectrolysis
2
Copyright2021Lazard Source:WorldNuclearAssociation(2020),HydrogenCouncil,InternationalEnergyAgency,FuelCellandHydrogenEnergyAssociationandNationalRenewableEnergyLaboratory.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
I OVERVIEW OF HYDROGEN PRODUCTION AND APPLICATIONS
HydrogenApplicationsinToday’sEconomy
Theadaptabilityofhydrogentosupplementorreplacegaseousandliquidfossilfuelscreatesnumerousopportunitiestoaddresstheneedsofavarietyofeconomicsectors
Form
Sector
Power
GasDistribution/DistrictHeating
GAS&
OilandGasProduction
FUELCELL
Heavy/SpecialtyIndustry
IndustrialChemicalProduction
Heavy-Duty/IndustrialVehicles
H2
GAS&
Cargoand/orPassengerRail
FUELCELL
MaritimeShippingand/orTravel
Aviation
GAS&LIQUID/
Light-DutyVehicles
SYNTHETICFUEL
Other
Notes
Gaseoushydrogenandammoniacanbeutilizedasfuelsubstitutesinpowergeneration,gasdistribution,andcombinedheatandpower(“CHP”)applications
Hydrogencouldalsoprovideameansforprovidingseasonalstorageforthepowergrid
Hydrogenisusedinrefiningandcanbeintegratedintotheproductionprocessesforcarbon-intensivematerialssuchasaluminum,iron,steelandcement
Theproductionofammonia,methanolandotherindustrialchemicalsrequireshydrogenasaprimaryingredient
Gaseoushydrogencanbecombusteddirectly,orwhenpairedwithfuelcells,canfunctionasasubstituteforconventionalfuels(e.g.,naturalgas,fueloil,etc.)foruseincommercialandindustrialvehicles(e.g.,forklifts,etc.)
Hydrogenfuelcellelectricvehicles(“HFEVs”)competefavorablywithbatteryelectricvehicles(“BEVs”)inindustrialapplicationsthatrequirehighuptime,quickrefuelingandtheabilitytomoveheavyloads
Ammoniaandmethanolareviablesubstitutefuelsforvariousheavy-dutyapplications(e.g.,maritime),wheretheenergydensityandeaseofhandlingofthesefuelsiscompetitivewithconventionalalternatives
Hydrogencanbecombinedwithcarbondioxidetoproducelow-ornet-zeroemissionsaviationandsyntheticfuels,dependingontheinitialsourceofcarbondioxide
HFEVsareaviablealternativetoBEVsforlarger/heavierpassengervehicles(e.g.,sportutilityvehicles),wheretheadditionalcarryingcapacityoffueloffsetstherelativelyheaviervehicleplatform
HFEVsmaintainanadvantageoverBEVstotheextenttheweight-to-powerdensityprofileoflargerpassengervehiclesoffsetsthelowerefficiencyofthegas-to-electricity
conversionprocess
3
Copyright2021Lazard Source:HydrogenCouncil,InternationalEnergyAgency,FuelCellandHydrogenEnergyAssociationandNationalRenewableEnergyLaboratory.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
II FrequentlyAskedQuestionsPertainingtoHydrogen
II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN
HydrogenFAQs—MarketDrivers
LazardhasundertakenastudyoftheLCOHtoanalyzethecurrentunsubsidizedcosttoproducegreenhydrogenthroughelectrolysis.Givenhydrogen’sversatilityasacleanfuelsource,itisviewedasapotentiallydisruptivesolutionfordecarbonizingavarietyofeconomicsectors
WhatIsGreenHydrogenandHowCanItSupporttheDecarbonizationofEconomicActivity?
HowIsGreenHydrogenProduced?
Greenhydrogenisproducedwhenrenewableenergyisusedtosplitwaterintoitscomponentpartsthroughelectrolysis
Theversatilityofgreenhydrogenasaliquidorgaseousfuel,combinedwithitssuitabilityforvariousmodesoftransport,makesitanaturalsubstituteforanumberofexistingfossilfuels(e.g.,naturalgas,gasoline,diesel,coalandoil)
Asaresultofitsversatility,greenhydrogenisapotentialsolutionforreducingcarbonemissionsintraditionally“hard-to-abate”sectorssuchastransportation/mobility,heating,oilrefining,ammoniaandmethanolproduction,andpowergeneration
Therearefourtypesofwaterelectrolysistechnologiesthatareusedtocreategreenhydrogen:
Alkalineelectrolysisisthemostdevelopedandcommercializedprocesstodate
PEMelectrolysisisthenext-mostmatureprocesswithgrowingcommercialization
PEMisadvantageousoveralkalinewithasmallerfootprint,abilitytoloadfollowduetolowerstartupandsystemresponsetimes,lowerminimumloadrequirementsandgreaterloadflexibility(i.e.,optimizeoutputbasedontheavailabilityofintermittentrenewableenergy)
Solidoxideandanionexchangemembrane(“AEM”)electrolysisprocessesarestillinpilot/developmentstages—theseprocessesarenotexpectedtobebroadlycommercializedbeforethemid2020s
Source:InternationalRenewableEnergyAgency,InternationalEnergyAgency,U.S.DepartmentofEnergy,BidenAdministration,EuropeanUnion,nationalgovernmentfilings,National
4
Copyright2021Lazard
RenewableEnergyLaboratoryandCaliforniaEnergyCommission.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor
otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN
HydrogenFAQs—End-UseApplications
Hydrogeniscurrentlyusedprimarilyinindustrialapplications,includingoilrefining,steelproduction,ammoniaandmethanolproduction,andfeedstockforothersmaller-scalechemicalprocesses
WhichSectorsCan
GreenhydrogenisbestpositionedtoreduceCO2emissionsintypically“hard-to-abate”sectorssuchascementproduction,
UtilizeGreen
centralizedenergysystems,steelproduction,transportationandmobility(e.g.,forklifts,maritimevessels,trucksandbuses),
HydrogentoReduce
andbuildingpowerandheatsystems
CO2Emissions?
Naturalgasutilitiesarelikelytobeearlyadoptersofgreenhydrogenasmethanation(i.e.,combininghydrogenwithCO2to
producemethane)becomescommerciallyviableandpipelineinfrastructureisupgradedtosupporthydrogenblends
WhatIsthe
Materialhandlingequipment(e.g.,forklifts)andindustrialusecases(e.g.,oilrefining,ammoniaandmethanolfeedstock)are
currentlyamongthemorewidelyadoptedusecasesforgreenhydrogen
“Integration
Near-term(asthedecadeprogresses),“massmarketacceptability”(i.e.,sales>1%ofthemarket)couldoccurfor
Readiness”ofVarious
applicationssuchasheavy-dutytrucking,citybuses,decarbonizationoffeedstockandhydrogenstorage,amongothers
UseCaseswith
RespecttoGreenH2?
Longer-term(i.e.,beyond2030),commerciallyviablegreenhydrogenapplicationsareexpectedtoexpandtoothermobility
segments(e.g.,drop-insyntheticfuels),steelproduction,blendingwithnaturalgasandheatingapplications
Potentialinfrastructureneedsforthewidespreadadoptionofgreenhydrogen:
Oncegreenhydrogenisproduced,itmustbestored,transportedandpotentiallyconverted,unlessconsumedon-site
Transportandstorage(e.g.,pressurization)aremeaningfulbarriersforgreenhydrogenbeingbroadlycostcompetitive
Mostexistingnaturalgasdistributioninfrastructurecannotaccommodatepureorevenlow-levelblending(i.e.,<20%)of
hydrogenwithnaturalgas
WhatInfrastructure
Refuelingstationsformobilityapplicationswillrequiresophisticatedstoragefacilitiesandeitherlocalordistributed
IsNeededtoSupport
production,withthelatternecessitatingtransmissioninfrastructurefromcentralproductionlocations
Adoption?
Certainexistinginfrastructurecanbeutilizedtosupportthewidespreadadoptionofgreenhydrogen
Injectionofhydrogenintoexistingindustrial(i.e.,welded)pipelineinfrastructureisacost-effectivemeansfortransportationanddistribution
Non-pipelinetransportation(e.g.,shipping,trucking,etc.)issubstantiallymoreexpensive,albeitfacilitateslonger-rangeandmoreflexibletransportation
Methanatedgreenhydrogen(i.e.,greenmethane)isfullycompatiblewithexistingnaturalgasdistributioninfrastructure
Source:Companyfilings,HydrogenCouncil,InternationalEnergyAgency,InternationalRenewableEnergyAgency,FuelCellandHydrogenEnergyAssociation,U.S.
5
Copyright2021Lazard
DepartmentofEnergyandNationalRenewableEnergyLaboratory.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor
otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN
HydrogenFAQs—IndustryLandscape
WhatIstheGreenHydrogenValueChainandWhoAretheKeyPlayers?
Thegreenhydrogenproductionvaluechaincanbedividedintofiveprimarysegments:
Processinputgeneration
Greenhydrogenproduction
Conversion,includingcompressionandstorage
Transportation,includingvesselsandpipeline
Reconversiontogaseoushydrogenasapplicable
Keyendusersinthevaluechainincludeindependentpowerproducers,electricandnaturalgasutilities,oilandgasmajors,electrolyzermanufacturers,theautomotivesector,infrastructureandtransportationproviders,andotherendusers
Theelectrolyzermanufacturerlandscapeissplitbetweenadvancedmanufacturersandsmallerplayerswhosetechnologiesarestillunderdevelopmentorinpilotstages
Downstreamvaluechainparticipantsincludeutilities,oilandgasmajors,transportandstorageprovidersincludingfuelcells,andvariousmunicipalities/governmentsandOEMsdrivingrefuelingstationinvestment
Source:Companyfilings,U.S.DepartmentofEnergy,HydrogenCouncil,InternationalEnergyAgency,FuelCellandHydrogenEnergyAssociationandNational
6
Copyright2021Lazard
RenewableEnergyLaboratory.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor
otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN
HydrogenFAQs—CostEffectiveness
Greenhydrogenisnotyetbroadlycostcompetitiveascomparedtotheconventionalfuelsitwouldreplace
Thiscostdisparityshoulddiminishasthecostofrenewableenergycontinuestodeclineand/orgreenhydrogenprojects
WhatIstheCostof
aredevelopedinsuchawayastoconsumerenewableenergythatwouldotherwisebecurtailed
GreenHydrogen
RelativetoOther
Transportation,conversion,andinfrastructureandend-useupgradecostswillcontinuetobemeaningfuldriversofthecost
Fuels?
structureofgreenhydrogenvs.alternativefuels
Otherformsofhydrogen(e.g.,bluehydrogen)arecurrentlylessexpensivethangreenhydrogen,particularlyintheabsence
ofcarbonpricingorothermechanismsusedtoaccountforemissions
Thecostcompetitivenessofgreenhydrogenshouldincreaseastheindustrygrows,drivingimprovementsintheunderlying
electrolyzertechnologyinconjunctionwithcostimprovementsresultingfrommanufacturingscaleandefficiency
WhatWillBetheKey
Electrolyzerstackcostscurrentlycomprise~33%–45%ofthetotalcapitalcostswhilethecostofelectricityrepresents
DriversofGreen
~30%–60%ofthelevelizedcostofgreenhydrogen
HydrogenCost
Policyaction(e.g.,carbonpricesorincentives)shouldalsoinfluencetherelativecostofgreenhydrogenascomparedto
Competitiveness?
fossilfuelalternatives
Thefuturecostcompetitivenessofgreenhydrogenwillalsodependontheinterplaybetweenenduseandproximityof
production,whichinturninformsthetransportationandstoragecostsassociatedwithagivenapplication
Giventhatthecostofelectricityisakeydriverofthecostofgreenhydrogen,theavailabilityoflow-costrenewableenergyiscritical—theoptimallocationsforgreenhydrogenproductioninthisregardwillbeinareasthat:
HowWillRenewableEnergyProductionandLocationImpactCosts?
Havethecapacitytoproducegreenhydrogenatscaleandwithabundantlow-orzero-cost(i.e.,curtailed)renewableenergyresources
Haveinherentdemandforlocalgreenhydrogen(e.g.,drivenbydecarbonizationregulations/incentives)and/orareequippedwithefficienttransportationinfrastructure,therebyavoidinghightransportationandstoragecosts
Source:Companyfilings,HydrogenCouncil,InternationalEnergyAgency,InternationalRenewableEnergyAgency,FuelCellandHydrogenEnergyAssociation,
7
Copyright2021Lazard
CaliforniaEnergyCommissionandNationalRenewableEnergyLaboratory.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor
otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
III IllustrativeGreenHydrogenCostAnalysis
III ILLUSTRATIVE GREEN HYDROGEN COST ANALYSIS
Lazard’sLevelizedCostofHydrogen—Methodology
Lazard’sLevelizedCostofHydrogenanalysisisillustrativeinnatureandemploysasimplifiedmethodology.Asaresult,anumberofassumptionsmustbemadetostandardizethevariousparametersofanotherwisecomplexanalysis,including:
TheLCOHiscalculated“asdelivered”byanAlkalineorPEMelectrolyzer—noadditionalconversion,storageortransportationcostsareconsideredinthisanalysis
Theelectricityutilizedasaninputforelectrolysisisproducedbyarenewableenergyfacility,therebymakingthehydrogen“green”—thepotentialintermittencyoftherenewableenergyresourceiscapturedintheutilizationassumptionwhichissensitizedinthesubsequentpages
Theanalysishorizonis15years.Inputcostsaregrownbyafixedescalationrateoverthisterm—seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”foradditionaldetail
Anavailabilityfactorof98%isassumedacrosstechnologiesandsystemcapacities—adjustmentstoutilizationratesdonotimpacttheoperationalcharacteristics,andassociatedmaintenancecosts,ofaplantbeyondtheconsumptionofinputsandresultinghydrogenproduced
Stackreplacementoccursatanintervaldeterminedbyplantavailability,utilizationandstacklifetime(measuredinhours)—stackreplacementcostsareidenticaltotheoriginalcostofthestack
Thisanalysiscalculatestherevenuerequirement,ona$/kgbasis,neededtoachievea12%levered,after-taxreturntotheprojectinvestor.Seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”foradditionaldetailsonassumedcapitalstructure
Otherfactorswouldalsohaveapotentiallysignificanteffectontheresultscontainedherein,buthavenotbeenexaminedinthescopeofthisanalysis.Theseadditionalfactors,amongothers,couldinclude:developmentcostsoftheelectrolyzerandassociatedrenewableenergygenerationfacility;conversion,storageortransportationcostsofthehydrogenonceproduced;additionalcoststoproducealternatefuels(e.g.,ammonia);coststoupgradeexistinginfrastructuretofacilitatethetransportationofhydrogen(e.g.,naturalgasdistributionpipelines);electricalgridupgrades;costsassociatedwithmodifyingend-useinfrastructure/equipmenttousehydrogenasafuelsource;potentialvalueassociatedwithcarbon-freefuelproduction(e.g.,carboncredits,incentives,etc.).Thisanalysisalsodoesnotaddresspotentialenvironmentalandsocialexternalities,including,forexample,waterconsumptionandthesocietalconsequencesofdisplacingthevariousconventionalfuelswithhydrogenthataredifficulttomeasure
8
Copyright2021Lazard
Note:Seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”fordetailedmodelingassumptionsforallprojecttypesevaluatedinthisanalysis.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.
III ILLUSTRATIVE GREEN HYDROGEN COST ANALYSIS
CurrentLevelizedCostofHydrogenProduction(1)—1MWElectrolyzer
Greenhydrogenisarelativelyexpensivefuelascomparedtoconventionalalternatives;however,theincreasingpenetrationofrenewableenergyinpowergeneration,technologicalandcostimprovementsinelectrolyzertechnology,andcarbonpricingcollectivelyhavethepotentialtosubstantivelyalterthisdynamic
ThisanalysisevaluatesthesensitivityoftheLCOH,in$/kg,tochangesincapex,costofelectricityandelectrolyzerutilization
Wehavecompiledmarketdatafor“l(fā)ow-”,“medium-”and“high-”efficiencyelectrolyzersacrosscapacitiesof1,20and100MW
Thesensitivitiesbelowandonsubsequentpagesevaluatethe“medium-”efficiencyunitsacrossscaleandtechnology
SensitivitytoElectricityCostandElectrolyzerCapex(2)
($/MWh)EnergyCost
Alkaline(1MW)
ElectrolyzerCapex($/kW)
$/kg
$1,180
$1,310
$1,460
$1,610
$1,770
$10
$1.33
$1.43
$1.54
$1.65
$1.77
$20
$1.60
$1.70
$1.81
$1.92
$2.04
$30
$1.87
$1.97
$2.08
$2.19
$2.31
$40
$2.14
$2.24
$2.35
$2.46
$2.57
$50
$2.41
$2.51
$2.62
$2.73
$2.84
($/MWh)EnergyCost
PEM(1MW)
ElectrolyzerCapex($/kW)
$/kg
$1,420
$1,580
$1,760
$1,940
$2,130
$10
$1.84
$1.97
$2.12
$2.27
$2.43
$20
$2.15
$2.28
$2.43
$2.58
$2.74
$30
$2.45
$2.59
$2.74
$2.89
$3.05
$40
$2.76
$2.90
$3.05
$3.20
$3.36
$50
$3.07
$3.21
$3.36
$3.51
$3.67
$/kg
EnergyCost($/MWh)
$10
$20
$40
$30
$50
Copyright2021Lazard
SensitivitytoElectricityCostandUtilizationRate(3)
Alkaline(1MW)
PEM(1MW)
ElectrolyzerUtilization
ElectrolyzerUtilization
100%
90%
80%
70%
60%
$/kg
100%
90%
80%
70%
60%
$1.54
$1.61
$1.76
$1.93
$2.16
EnergyCost($/MWh)
$10
$2.12
$2.25
$2.39
$2.65
$2.98
$1.81
$1.88
$2.03
$2.20
$2.43
$20
$2.43
$2.56
$2.70
$2.96
$3.29
$2.35
$2.42
$2.57
$2.74
$2.97
$40
$3.05
$3.18
$3.32
$3.58
$3.90
$2.08
$2.15
$2.30
$2.47
$2.70
$30
$2.74
$2.87
$3.01
$3.27
$3.59
$2.62
$2.69
$2.84
$3.01
$3.24
$50
$3.36
$3.49
$3.63
$3.89
$4.21
Source:FuelCellandHydrogenEnergyAssociation,NationalRenewableEnergyLaboratory,PacificNorthwestNationalLaboratory,andLazardandRolandBergerestimates.
Note:
Seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”fordetailedmodelingassumptionsforallprojecttypesevaluatedinthisanalysis.
9
(1)
TheLCOHanalysisisbasedondatacollectedfromindustryandadiscountedcashflowanalysiswhichcalculatestherevenuerequirementtoachievealeveredequityreturnof12%.
(2)
Sensitivityisbasedona98%electrolyzerutilizationrateforbothtechnologies.
(3)
Sensitivityisbasedonthecapexassumptionformedium-efficiencyelectrolyzersforeachtechnology.
ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisno
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年單圓頭單板壓痕線項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年二羥基三萘鉀酰胺項(xiàng)目投資價(jià)值分析報(bào)告
- 房產(chǎn)權(quán)益轉(zhuǎn)讓合同
- 房屋代理銷(xiāo)售協(xié)議書(shū)
- 個(gè)人臨時(shí)用車(chē)租車(chē)協(xié)議書(shū)范本
- 特許連鎖經(jīng)營(yíng)協(xié)議書(shū)范本
- 預(yù)包裝食品合同范本
- 房屋委托出租管理合同范本
- 汽車(chē)以租代售合同范本
- 外企勞動(dòng)合同范本
- 讀書(shū)分享-于永正-我怎樣教語(yǔ)文
- 鄉(xiāng)鎮(zhèn)教育管理中心2025年教育教學(xué)工作計(jì)劃
- 多旋翼無(wú)人飛行器嵌入式飛控開(kāi)發(fā)實(shí)戰(zhàn)-基于STM32系列微控制器的代碼實(shí)現(xiàn)
- 國(guó)家開(kāi)放大學(xué)護(hù)理社會(huì)實(shí)踐報(bào)告
- 采購(gòu)經(jīng)理年終述職報(bào)告
- 網(wǎng)絡(luò)直播平臺(tái)用戶(hù)行為規(guī)范及管理制度
- 腦卒中早期識(shí)別和健康教育
- 2024年奧迪正規(guī)購(gòu)車(chē)合同范本
- 2024年華東電網(wǎng)考試題庫(kù)
- 工程項(xiàng)目歸檔資料目錄范本
- 地 理探究與實(shí)踐 保護(hù)世界文化遺產(chǎn)課件 2024-2025學(xué)年地理湘教版七年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論