機(jī)器學(xué)習(xí)與模式識(shí)別的關(guān)系(英文版)_第1頁
機(jī)器學(xué)習(xí)與模式識(shí)別的關(guān)系(英文版)_第2頁
機(jī)器學(xué)習(xí)與模式識(shí)別的關(guān)系(英文版)_第3頁
機(jī)器學(xué)習(xí)與模式識(shí)別的關(guān)系(英文版)_第4頁
機(jī)器學(xué)習(xí)與模式識(shí)別的關(guān)系(英文版)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

題目:機(jī)器學(xué)習(xí)與模式識(shí)別學(xué)號(hào):02115***姓名:*** MachineLearningandPatternRecognitionAbstractRecently,machinelearninghasdevelopedrapidlyininformationfield.Also,ithasacloserelationshipwithpatternrecognition.Machininglearninghasbeenappliedtopatternrecognitionsuccessfully.Therefore,thepaperdescribesthebasiccharacteristicsofmachinelearningandpatternrecognition,whichincludestheconcepts,development,applicationandclassification.Italsoprovidesanapplicationperspectiveforunderstandingtheconceptsofmachiningandpatternrecognition.Keywords:MachineLearningPatternRecognition0.IntroductionMachinelearningisoneofthecoreproblemsofartificialintelligenceresearch.Itsapplicationhasbeenthroughoutallbranchesofartificialintelligence,suchasexpertsystems,automatedreasoninginthefieldofnaturallanguageunderstanding,patternrecognition,computervision,intelligentrobotics.Justasitsnameimplies,Machinelearningistoletthecomputertolearnsomewaytoimproveitsperformance.Patternrecognitioncanbeseenassomethingwhichcandividedifferentobjectsintodifferentcategories.Humanscandeepentheirunderstandingofthingsthroughcontinuouslearning,similarlythepatternrecognitionsystembasedonsimulatinghumanintelligencealsoneedstoimproveitsclassificationperformancethroughmachinelearningalgorithmimprovements,sothecontactbetweenmachinelearningandpatternrecognitionisgettingcloserandcloser.Thisarticlewillexplainthebasicconceptsofmachinelearningandpatternrecognition,patternrecognitionanalysisinseveralmachinelearningalgorithms.1.MachineLearning1.1ThedefinitionofmachinelearningCurrently,theaccuratedefinitionofmachinelearning:forcertainassignmentTandperformancemetricsP,ifacomputerprogramtomeasuretheperformanceofPandalongwiththeexperienceofself-improvementonT,thenwecallthecomputerprogramislearningfromexperienceE.1.2TheworkingmechanismofthemachinelearningsystemTheenvironmentprovidescertaininformationtothelearningpartsofthesystem,thenthelearningpartusesthisinformationtomodifyitsknowledgebasetoenhancetheperformanceofexecutionpart;Theexecutiondoitsworkaccordingtheknowledgebase,alsobringbacktheacquiredinformationtolearningpart.Theprocesscanbeseenasacertainprocessthatthemachinelearningsystemacquireknowledgeautomaticallywithinformationwhichareprovidedbyinternalandexternalenvironment.EnvironmentLearningpartKnowledgebaseExecutionpart1.3ThedesignofthemachinelearningsystemTherearemainlytwopartsthatneedbetakenintoconsiderationwhendesigningaperfectmachinelearningsystem:Modelselectionanddesign,Learningalgorithmselectionanddesign.Differentmodelsdeterminedifferentobjectivefunctionsanddifferentlearningmechanisms.Thecomplexityandcapacityofalgorithmdeterminethecapacityandefficiencyofthelearningsystem.Alsothesizeoftrainingsamplesandfeatureselectionproblemarethekeyfactorswhichwillconstrainmachinelearningsystemperformance.2.MachinelearningalgorithminpatternrecognitionPatternrecognitionmeansthatweshouldanalyzeperceptionsignal.Itisaprocessofidentificationandinterpretation.Wecandrawapicturetodescribethisprocess.獲取數(shù)據(jù)預(yù)處理特征生成特征選擇模式分類后處理機(jī)器學(xué)習(xí)Thecoreissueofmachinelearningissearchingproblems.Asfordifferentapplicationmodels,theresearchershavedesignedsomedifferentsearchingalgorithms.Currentlyinthefieldofpatternrecognition,weoftenusegeneticalgorithms,neuralnetworks,supportvectormachines,k-nearestneighbormethodandothermachinelearningalgorithms.2.1GeneticalgorithmCharacteristicdimensionisamajorprobleminmachinelearning,becausethecharacteristicspresentedfromcertainmodelhavedifferentweightsinreflectingthenatureofthings.Butsomeshowednosignificantcontributiontothecatagories,evenredundant,sothefeatureselectionprocessisverycritical.Geneticalgorithmcansolvethisproblemtosomeextendasaoptimizationalgorithm.Geneticalgorithmnotonlycanchoosethefeaturethatnotonlyreflectstheoriginalinformation,butalsohaveasignificantimpactontheclassificationresults.TherearethreekindsofoperationinGA.Selection-reproduction,crossover,aswellasmutation.Weusuallydoasfollows:ChooseNchromosomesfrompopulationSinNseparatetimes.TheprobabilityofoneindividualbeingchosenisP(xi).ThecomputationalformulaofP(xi):Thereisachancethatthechromosomesofthetwoparentsarecopiedunmodifiedasoffspring,orrandomlyrecombined(crossover)toformoffspring.Alsothereisachancethatageneofachildischangedrandomly.Generallythechanceofmutationislow.GAhavefourbasicelementsfromthepresent:codingstrategies;settinginitialpopulation;designoffitnessfunction;geneticoperatorsdesign,chooseoperator,crossoveroperator,mutationoperator,andthesehavebeenaimportantpointsinimproving.2.2ArtificialneuralnetworksNeuralnetworkisanewtechnologyinthefieldofmachinelearning.Manypeoplehaveheardoftheword,butfewpeoplereallyunderstandwhatitis.Thebasicneuralnetworkfunctions,includingitsgeneralstructure,relatedterms,typesandapplications.Inpatternrecognitionapplications,aclassifierusinganeuralnetworkisdesignedbyarelativelysmallnumberofneuronsconnectedtogetheraccordingtocertainrulesofnetworksystem,andeachneuroninthenetworkhavethesamestructure.Neuronstypicallyexpressedasamultiple-input,single-outputnonlinearelements,itsstructurecanbedesignedlikethis:Asalinklearningalgorithm,neuralnetworkfeaturesare:parallelprocessingofinformation,storageanddistributionofstrongfaulttolerance;self-learning,self-organizationandself-applicability.Throughtraining,theneuralnetworkcanautomaticallyadjustitsnetworkconfigurationparameterstosimulatethenonlinearrelationshipbetweeninputandoutput,sowhenwegivethenetworksomeinputs,wecangettherightclassification.2.3SupportvectormachinesThesizeoftrainingsamplesinmachinelearningsysteminfluencetheabilityofgeneralizationlearningsystem.Inmachinelearning,supportvectormachines(SVMs,alsosupportvectornetworks)aresupervisedlearningmodelswithassociatedlearningalgorithmsthatanalyzedataandrecognizepatterns,usedforclassificationandregressionanalysis.Givenasetoftrainingexamples,eachmarkedasbelongingtooneoftwocategories,anSVMtrainingalgorithmbuildsamodelthatassignsnewexamplesintoonecategoryortheother,makingitanon-probabilisticbinarylinearclassifier.AnSVMmodelisarepresentationoftheexamplesaspointsinspace,mappedsothattheexamplesoftheseparatecategoriesaredividedbyacleargapthatisaswideaspossible.Newexamplesarethenmappedintothatsamespaceandpredictedtobelongtoacategorybasedonwhichsideofthegaptheyfallon.Inadditiontoperforminglinearclassification,SVMscanefficientlyperforma

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論