版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年陜西省西安電子科技中學(xué)高中畢業(yè)班新課程教學(xué)質(zhì)量監(jiān)測卷數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.2.?dāng)?shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要3.已知向量,且,則等于()A.4 B.3 C.2 D.14.設(shè)為銳角,若,則的值為()A. B. C. D.5.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.17.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了8.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.9.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.10.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.411.已知集合則()A. B. C. D.12.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓Г:,F(xiàn)1、F2是橢圓Г的左、右焦點,A為橢圓Г的上頂點,延長AF2交橢圓Г于點B,若為等腰三角形,則橢圓Г的離心率為___________.14.已知實數(shù),滿足約束條件,則的最大值是__________.15.某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,再次燒制過程相互獨立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為________;經(jīng)過前后兩次燒制后,合格工藝品的件數(shù)為,則隨機(jī)變量的期望為________.16.已知函數(shù),若恒成立,則的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.18.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.19.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項和為,且,(,).(1)求數(shù)列的通項公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.20.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.21.(12分)設(shè)橢圓的離心率為,左、右焦點分別為,點D在橢圓C上,的周長為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標(biāo)原點,求證:為定值.22.(10分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時取最大值,所以.故選:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.2、A【解析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.3、D【解析】
由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因為,且,,則.故選:.【點睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、D【解析】
用誘導(dǎo)公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.5、B【解析】
由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.6、C【解析】
利用復(fù)數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎(chǔ)題.7、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.8、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點坐標(biāo)為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關(guān)的幾何性質(zhì),考查運算求解能力,屬于中檔題.9、A【解析】試題分析:設(shè)公差為或(舍),故選A.考點:等差數(shù)列及其性質(zhì).10、C【解析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.11、B【解析】
解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.12、D【解析】
根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可得等腰三角形的兩條相等的邊,設(shè),由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關(guān)系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設(shè)|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設(shè)∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結(jié)合余弦定理,易得在中,,所以,即e==,故答案為:.【點睛】此題考查橢圓的定義及余弦定理的簡單應(yīng)用,屬于中檔題.14、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.15、0.380.9【解析】
考慮恰有一件的三種情況直接計算得到概率,隨機(jī)變量的可能取值為,計算得到概率,再計算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,,.故隨機(jī)變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點睛】本題考查了概率的計算,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.16、【解析】
求導(dǎo)得到,討論和兩種情況,計算時,函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳驗椋裕驗?,所以.當(dāng),即時,,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時,因為在上單調(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)題意即可寫出該批次產(chǎn)品長度誤差的絕對值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標(biāo)準(zhǔn)長度的概率為0.4,即可求出隨機(jī)抽取2件產(chǎn)品,都不是標(biāo)準(zhǔn)長度產(chǎn)品的概率,由對立事件的概率公式即可得到隨機(jī)抽取2件產(chǎn)品,至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時,設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計為.(2)由(1)可知任取一件產(chǎn)品是標(biāo)準(zhǔn)長度的概率為0.4,設(shè)至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率為,由題意,又,解得,所以符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值為.【點睛】本題主要考查離散型隨機(jī)變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應(yīng)用,對立事件的概率公式的應(yīng)用,解題關(guān)鍵是對題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.18、(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當(dāng)時,單調(diào)遞增,且,當(dāng)時,單調(diào)遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.19、(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè)【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因為,,所以,解得.所以數(shù)列的通項公式為:.(2)由(1)得,當(dāng),時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數(shù)列是以為首項,1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當(dāng),時,,這與矛盾.(ii)若,則當(dāng),時,.而,,所以.故,這與矛盾.所以.其次證明:當(dāng)時,.因為,所以在上單調(diào)遞增,所以,當(dāng)時,.所以當(dāng),時,.再次證明.(iii)若時,則當(dāng),,,,這與③矛盾.(iv)若時,同(i)可得矛盾.所以.當(dāng)時,因為,,所以對任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè).【點睛】本題考查求等比數(shù)列通項公式,證明等差數(shù)列,以及數(shù)列中的探索性問題,是一道數(shù)列綜合題,考查學(xué)生的分析,推理能力.20、(1)(2)證明見解析【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因為,,所以要證,只需證,即證,因為,所以只要證,即證,即證,因為,所以只需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標(biāo)準(zhǔn)化枸杞批發(fā)買賣合同版
- 元旦活動策劃集錦15篇
- 水資源的調(diào)查報告
- 軍訓(xùn)拓展心得體會15篇
- 技術(shù)員年度總結(jié)10篇
- 豎向荷載作用下群樁效應(yīng)
- 關(guān)于七年級語文說課稿3篇
- 酒店的工作總結(jié)10篇
- 人教版歷史與社會八年級上冊第三單元第五節(jié)課《昌盛的秦漢文化》 教學(xué)實錄2
- 廣東省東莞市黃岡理想學(xué)校七年級信息技術(shù)下冊 第1章 第5節(jié) 綜合活動:創(chuàng)作校園報刊教學(xué)實錄 粵教版
- 彩色簡約魚骨圖PPT圖表模板
- 道路旅客運輸企業(yè)實現(xiàn)安全生產(chǎn)方針與目標(biāo)的保障措施
- 招聘與錄用選擇題
- 營銷中心物業(yè)服務(wù)標(biāo)準(zhǔn)講解
- 周視瞄準(zhǔn)鏡的初步設(shè)計-北京理工大學(xué)-光電學(xué)院小學(xué)期作業(yè)
- Writing寫作教學(xué)設(shè)計
- 中國農(nóng)村信用社支票打印模板xls
- 壓力管道安裝工藝和檢驗規(guī)定
- 上海市寶山區(qū)2019屆高三英語一模含答案
- 小學(xué)英語語音專項練習(xí)題(附答案)
- 《數(shù)與形》教學(xué)反思
評論
0/150
提交評論