2023-2024學年廣西南寧市馬山縣金倫中學4 N高中聯(lián)合體高二數(shù)學第一學期期末經(jīng)典試題含解析_第1頁
2023-2024學年廣西南寧市馬山縣金倫中學4 N高中聯(lián)合體高二數(shù)學第一學期期末經(jīng)典試題含解析_第2頁
2023-2024學年廣西南寧市馬山縣金倫中學4 N高中聯(lián)合體高二數(shù)學第一學期期末經(jīng)典試題含解析_第3頁
2023-2024學年廣西南寧市馬山縣金倫中學4 N高中聯(lián)合體高二數(shù)學第一學期期末經(jīng)典試題含解析_第4頁
2023-2024學年廣西南寧市馬山縣金倫中學4 N高中聯(lián)合體高二數(shù)學第一學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年廣西南寧市馬山縣金倫中學4N高中聯(lián)合體高二數(shù)學第一學期期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某地區(qū)7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,從中隨機選一人,則此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037452.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.3.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或4.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.6.在平面上有及內(nèi)一點O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心7.已知圓與圓,則圓M與圓N的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離8.函數(shù),則的值為()A. B.C. D.9.已知隨機變量服從正態(tài)分布,且,則()A.0.6 B.0.4C.0.3 D.0.210.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°11.小方每次投籃的命中率為,假設每次投籃相互獨立,則他連續(xù)投籃2次,恰有1次命中的概率為()A. B.C. D.12.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點P是拋物線y2=2x上的動點,點P在y軸上的射影是M,點,則|的最小值是_________14.已知函數(shù)是函數(shù)的導函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.15.在數(shù)列中,,,,若數(shù)列是遞減數(shù)列,數(shù)列是遞增數(shù)列,則______16.已知點,則線段的垂直平分線的一般式方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點分別為,三個頂點(左、右頂點和上頂點)構(gòu)成的三角形的面積為,離心率為方程的根.(1)求橢圓方程;(2)橢圓的一個內(nèi)接平行四邊形的一組對邊分別過點和,如圖,若這個平行四邊形面積為,求平行四邊形的四個頂點的縱坐標的乘積.18.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值19.(12分)如圖,在正方體中,為棱的中點.求證:(1)平面;(2)求直線與平面所成角的大小.20.(12分)已知橢圓過點,離心率為.(1)求橢圓的方程;(2)過點作直線,與直線和橢圓分別交于兩點,(與不重合).判斷以為直徑的圓是否過定點,如果過定點,求出定點坐標;如果不過定點,說明理由.21.(12分)在①直線l:是拋物線C的準線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標準方程;(2)是拋物線C上在第一象限內(nèi)的一點,直線:與C交于M,N兩點,若的面積為,求m的值22.(10分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當軸時,,(1)求橢圓C的標準方程;(2)記,求實數(shù)m的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設出事件,利用全概率公式進行求解.【詳解】用事件A,B分別表示隨機選1人為男性或女性,用事件C表示此人恰是色盲,則,且A,B互斥,故故選:D2、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎題.3、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.4、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點睛】本題考查直線一般式中直線與直線垂直的系數(shù)關(guān)系,考查充分性和必要性的判斷,是基礎題.5、A【解析】利用平行線,將異面直線的夾角問題轉(zhuǎn)化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補角).設AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.6、B【解析】利用三角形面積公式,推出點O到三邊距離相等。【詳解】記點O到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B7、B【解析】將兩圓方程化為標準方程形式,計算圓心距,和兩圓半徑的和差比較,可得答案,【詳解】圓,即,圓心,圓,即,圓心,則故有,所以兩圓是相交的關(guān)系,故選:B8、B【解析】求出函數(shù)的導數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B9、A【解析】根據(jù)正態(tài)曲線的對稱性即可求得答案.【詳解】由題意,正態(tài)曲線的對稱軸為,則與關(guān)于對稱軸對稱,于是.故選:A.10、B【解析】利用直線的方向向量求出其斜率,進而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B11、A【解析】先弄清連續(xù)投籃2次,恰有1次命中的情況有兩種,它們是互斥關(guān)系,因此根據(jù)相互獨立事件以及互斥事件的概率計算公式進行求解.【詳解】由題意知,他連續(xù)投籃2次,有兩種互斥的情況,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率為,故選:A.12、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由拋物線的定義可得,所以的最小值轉(zhuǎn)化為求的最小值,由圖可知的最小值為,從而可求得答案【詳解】拋物線y2=2x焦點,準線為,由拋物線的定義可得,所以,因為,,所以,所以,當且僅當三點共線且在線段上時,取得最小值,所以的最小值為,故答案為:14、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)15、【解析】根據(jù)所給條件可歸納出當時,,利用迭代法即可求解.【詳解】因為,,,所以,即,,且是遞減數(shù)列,數(shù)列是遞增數(shù)列或(舍去),,,故可得當時,,故答案為:16、【解析】由中點坐標公式和斜率公式可得的中點和直線斜率,由垂直關(guān)系可得垂直平分線的斜率,由點斜式可得直線方程,化為一般式即可【詳解】由中點坐標公式可得,的中點為,可得直線的斜率為,由垂直關(guān)系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由橢圓離心率的性質(zhì)及一元二次方程的根可得,再由橢圓參數(shù)關(guān)系、已知三角形面積求橢圓參數(shù),即可得橢圓方程.(2)設直線,聯(lián)立橢圓方程并結(jié)合韋達定理求,進而可得,再根據(jù)求參數(shù)t,可得,結(jié)合橢圓的對稱性求,即可求結(jié)果.【小問1詳解】由的根為,所以橢圓的離心率,依題意,,解得,即橢圓的方程為;【小問2詳解】設直線,聯(lián)立,消去得,由韋達定理得:,所以,所以,所以橢圓的內(nèi)接平行四邊形面積.所以,解得或(舍去),所以,根據(jù)橢圓的對稱性知:,故平行四邊形的四個頂點的縱坐標的乘積為.18、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標系A﹣xyz,可得和的坐標,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進而可得答案解:(I)以,,x,y,z軸建立空間直角坐標系A﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點:異面直線及其所成的角;直線與平面所成的角19、(1)證明見解析;(2).【解析】(1)連接,交于,連接,推導出,由此能證明平面.(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出直線與平面所成角的大小.【詳解】(1)證明:連接,交于,連接,∵在正方體中,是正方形,∴是中點,∵為棱的中點,∴,∵平面,平面,∴平面.(2)解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,設正方體中棱長為2,則,,,,,,,設平面的法向量,則,取,得,設直線與平面所成角的大小為,則,∴,∴直線與平面所成角的大小為.【點睛】(1)求直線與平面所成的角的一般步驟:①找直線與平面所成的角,即通過找直線在平面上的射影來完成;②計算,要把直線與平面所成的角轉(zhuǎn)化到一個三角形中求解(2)作二面角的平面角可以通過垂線法進行,在一個半平面內(nèi)找一點作另一個半平面的垂線,再過垂足作二面角的棱的垂線,兩條垂線確定的平面和二面角的棱垂直,由此可得二面角的平面角20、(1)(2)過定點,定點為【解析】(1)根據(jù)離心率及頂點坐標求出即可得橢圓方程;(2)當直線斜率存在時,設直線的方程為(),求出的坐標,設是以為直徑的圓上的點,利用向量垂直可得恒成立,可得定點,斜率不存在時驗證即可.【小問1詳解】由題意得,,,又因為,所以.所以橢圓C的方程為.【小問2詳解】以為直徑的圓過定點.理由如下:當直線斜率存在時,設直線的方程為().令,得,所以.由得,則或,所以.設是以為直徑的圓上的任意一點,則,.由題意,,則以為直徑的圓的方程為.即恒成立即解得故以為直徑的圓恒過定點.當直線斜率不存在時,以為直徑的圓也過點.綜上,以為直徑的圓恒過定點.21、(1)(2)或.【解析】(1)選條件①,由準線方程得參數(shù),從而得拋物線方程;選條件②,由橢圓的焦點坐標與拋物線焦點坐標相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標,由點到直線距離公式求得到直線的距離,設,,直線方程代入拋物線方程,判別式大于0保證相交,由韋達定理得,由弦長公式得弦長,再計算出三角形的面積后可解得【小問1詳解】選條件①:由準線方程為知,所以拋物線C的方程為選條件②:因為拋物線的焦點坐標為所以由已知得橢圓的一個焦點為.所以,又,所以,所以拋物線C的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論