版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖北省黃岡、華師附中等八校數(shù)學(xué)高二上期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)的圖象在點處的切線為,則與坐標(biāo)軸圍成的三角形面積的最小值為()A. B.C. D.2.已知,,,則的大小關(guān)系是()A. B.C. D.3.已知直線與直線,若,則()A.6 B.C.2 D.4.某地政府為落實疫情防控常態(tài)化,不定時從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進(jìn)行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.5225.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64006.概率論起源于賭博問題.法國著名數(shù)學(xué)家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當(dāng)甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎7.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.28.已知是空間的一個基底,若,,若,則()A. B.C.3 D.9.2018年,倫敦著名的建筑事務(wù)所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設(shè)計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.10.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.11.已知向量,且,則的值為()A.4 B.2C.3 D.112.在四棱錐中,底面是正方形,為的中點,若,則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足約束條件,則的最小值為___________.14.設(shè),為實數(shù),已知經(jīng)過點的橢圓與雙曲線有相同的焦點,則___________.15.設(shè)函數(shù),,若存在,成立,則實數(shù)的取值范圍為__________.16.已知橢圓的右頂點為P,右焦點F與拋物線的焦點重合,的頂點與的中心O重合.若與相交于點A,B,且四邊形為菱形,則的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知某中學(xué)高二物化生組合學(xué)生的數(shù)學(xué)與物理的水平測試成績抽樣統(tǒng)計如下表:若抽取了名學(xué)生,成績分為A(優(yōu)秀),B(良好),C(及格)三個等級,設(shè),分別表示數(shù)學(xué)成績與物理成績,例如:表中物理成績?yōu)锳等級的共有(人),數(shù)學(xué)成績?yōu)锽等級且物理成績?yōu)镃等級的共有8人,已知與均為A等級的概率是0.07(1)設(shè)在該樣本中,數(shù)學(xué)成績的優(yōu)秀率是30%,求,的值;(2)已知,,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)多的概率18.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標(biāo)、頂點坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍19.(12分)已知數(shù)列的前項和,數(shù)列是各項均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.21.(12分)已知函數(shù)在處有極值,且其圖象經(jīng)過點.(1)求的解析式;(2)求在的最值.22.(10分)已知橢圓的短軸長是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點,線段AB的中點為M,是否存在常數(shù),使恒成立,并說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用導(dǎo)數(shù)的幾何意義求得切線為,求x、y軸上截距,進(jìn)而可得與坐標(biāo)軸圍成的三角形面積,利用導(dǎo)數(shù)研究在上的最值即可得結(jié)果.【詳解】由題設(shè),,則,又,所以切線為,當(dāng)時,當(dāng)時,又,所以與坐標(biāo)軸圍成的三角形面積為,則,當(dāng)時,當(dāng)時,所以在上遞減,在上遞增,即.故選:C2、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:3、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為直線與直線,且,所以,解得;故選:A4、D【解析】根據(jù)題意,求得組數(shù)與抽中編號的對應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設(shè)第組抽中的編號為,設(shè),由題可知:,故可得,故可得.當(dāng)時,.故選:.5、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.6、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.7、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.8、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C9、A【解析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標(biāo)為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.10、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A11、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.12、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】作出可行域,進(jìn)而根據(jù)z的幾何意義求得答案.【詳解】如圖,作出可行域,由z的幾何意義可知當(dāng)過點B時取得最小值.聯(lián)立,則最小值為.故答案為:.14、1【解析】由點P在橢圓上,可得的值,再根據(jù)橢圓與雙曲線有相同的焦點即可求解.【詳解】解:因為點在橢圓上,所以,解得,所以橢圓方程為,又橢圓與雙曲線有相同的焦點,所以,解得,故答案為:1.15、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:16、【解析】設(shè)拋物線的方程為得到,把代入橢圓的方程化簡即得解.【詳解】設(shè)拋物線的方程為.由題得,代入橢圓的方程得,所以,所以,所以因為,所以.故答案為:【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(根據(jù)已知求出代入離心率的公式即得解);(2)方程法(直接由已知得到關(guān)于離心率的方程解方程即得解).要根據(jù)已知條件靈活選擇方法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)與均為A等級的概率是0.07,求得值,再根據(jù)數(shù)學(xué)成績的優(yōu)秀率是30%求得值,最后利用抽取的總?cè)藬?shù)求出值即可;(2)根據(jù),,,寫出滿足條件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小問1詳解】由題意知,解得,,解得,由已知得,解得.【小問2詳解】由,,,可知,則試驗的樣本空間,共9個樣本點其中包含的樣本點有共4個,故所求概率18、(1)焦點坐標(biāo)為,,頂點坐標(biāo)為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點坐標(biāo)、頂點坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當(dāng)時,雙曲線方程化為,所以,,,所以焦點坐標(biāo)為,,頂點坐標(biāo)為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【點睛】本題根據(jù)雙曲線方程求焦點坐標(biāo)、頂點坐標(biāo)和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.19、(1),;(2).【解析】(1)利用求出數(shù)列的通項,再求出等比數(shù)列的公比即得解;(2)求出,再利用錯位相減法求解.【小問1詳解】解:,.當(dāng)時,,適合..設(shè)等比數(shù)列公比為,,,即,或(舍去),.【小問2詳解】解:,,,上述兩式相減,得,所以所以.20、(1)答案見解析(2)證明見解析【解析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時,,當(dāng)時,令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問1詳解】的定義域為當(dāng)時,,在上單調(diào)遞增;當(dāng)時,令,解得;令,解得;綜上所述:當(dāng)時,在上單調(diào)遞增,無減區(qū)間;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當(dāng)時,,,當(dāng)時,令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即21、(1)(2),【解析】(1)由與解方程組即可得解;(2)求導(dǎo)后得到函數(shù)的單調(diào)區(qū)間與極值后,比較端點值即可得解.【詳解】(1)求導(dǎo)得,處有極值,即,又圖象過點,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘極小值↗1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021-2026年中國花紋原紙市場競爭策略及行業(yè)投資潛力預(yù)測報告
- 2023-2028年中國胰島素注射液行業(yè)發(fā)展前景預(yù)測及投資戰(zhàn)略報告
- 2025年中國痛經(jīng)貼行業(yè)市場全景分析及投資策略研究報告
- 2024-2030年中國互聯(lián)網(wǎng)+消毒液行業(yè)發(fā)展運行現(xiàn)狀及投資戰(zhàn)略規(guī)劃報告
- 2021-2026年中國共享貨運行業(yè)投資分析及發(fā)展戰(zhàn)略研究咨詢報告
- 2025便利店勞動用工合同書范本
- 2025車輛質(zhì)押借款合同模板書
- 2025財產(chǎn)信托的合同書模板
- 2025旅游安全合同范本
- 建筑行業(yè)施工組織計劃文本
- 北京市海淀區(qū)2023-2024學(xué)年四年級上學(xué)期期末英語試題
- 2024年湖北省漢江國有資本投資集團有限公司招聘筆試參考題庫含答案解析
- 廣州市九區(qū)聯(lián)考2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷(原卷版)
- 西方國家的量刑建議制度及其比較
- 游戲方案模板
- 幼兒園大班數(shù)學(xué)上學(xué)期期末考試-試題測試
- 地震預(yù)警安裝方案
- 汽車產(chǎn)品定義 培訓(xùn)課件
- NICU患兒常規(guī)監(jiān)測和護理要點
- 數(shù)字工程勘察信息平臺構(gòu)建
- 噴涂設(shè)備保養(yǎng)和維護操作規(guī)程
評論
0/150
提交評論