2023-2024學(xué)年河南省鶴壁市浚縣二中高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
2023-2024學(xué)年河南省鶴壁市??h二中高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
2023-2024學(xué)年河南省鶴壁市??h二中高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
2023-2024學(xué)年河南省鶴壁市浚縣二中高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
2023-2024學(xué)年河南省鶴壁市??h二中高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年河南省鶴壁市??h二中高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當實數(shù),m變化時,的最大值是()A.3 B.4C.5 D.62.如圖,在正方體中,()A. B.C. D.3.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.4.圓與圓公切線的條數(shù)為()A.1 B.2C.3 D.45.在平面直角坐標系中,已知的頂點,,其內(nèi)切圓圓心在直線上,則頂點C的軌跡方程為()A. B.C. D.6.已知命題p:,,則命題p的否定為()A., B.,C., D.,7.設(shè)為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.58.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.49.一個袋中裝有大小和質(zhì)地相同的5個球,其中有2個紅色球,3個綠色球,從袋中不放回地依次隨機摸出2個球,下列結(jié)論正確的是()A.第一次摸到綠球的概率是 B.第二次摸到綠球的概率是C.兩次都摸到綠球的概率是 D.兩次都摸到紅球的概率是10.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點P在線段EF上.給出下列命題:①存在點P,使得直線平面ACF;②存在點P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④11.已知,,點為圓上任意一點,設(shè),則的最大值為()A. B.C. D.12.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設(shè)命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列前項之和為,若,則________14.已知拋物線C的方程為:,F(xiàn)為拋物線C的焦點,傾斜角為的直線過點F交拋物線C于A、B兩點,則線段AB的長為________15.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.16.在空間直角坐標系中,點到x軸的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關(guān)系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.18.(12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.(1)求橢圓的方程;(2)若以為直徑的圓過坐標原點,求的值.19.(12分)求下列函數(shù)導(dǎo)數(shù):(1);(2);20.(12分)已知為坐標原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為求橢圓的標準方程;過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍21.(12分)在數(shù)列中,,點在直線上.(1)求的通項公式;(2)記的前項和為,且,求數(shù)列的前項和.22.(10分)已知橢圓與橢圓的焦點相同,且橢圓C過點(1)求橢圓C的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且(O為坐標原點),若存在,求出該圓的方程;若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設(shè),因直線,即表示恒過定點,根據(jù)圓的性質(zhì)可得.故選:D.2、B【解析】根據(jù)正方體的性質(zhì),結(jié)合向量加減法的幾何意義有,即可知所表示的向量.【詳解】∵,而,∴,故選:B3、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A4、D【解析】分別求出圓和圓的圓心和半徑,判斷出兩圓的位置關(guān)系可得到公切線的條數(shù).【詳解】根據(jù)題意,圓即,其圓心為,半徑;圓即,其圓心為,半徑;兩圓的圓心距,所以兩圓相離,其公切線條數(shù)有4條;故選:D.5、A【解析】根據(jù)圖可得:為定值,利用根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為6的雙曲線的右支,從而寫出其方程即得【詳解】解:如圖設(shè)與圓切點分別為、、,則有,,,所以根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為4的雙曲線的右支(右頂點除外),即、,又,所以,所以方程為故選:A6、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.7、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B8、B【解析】先求出拋物線方程,焦點坐標,再用兩點間距離公式進行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標為,所以點到拋物線焦點的距離為故選:B9、C【解析】對選項A,直接求出第一次摸球且摸到綠球的概率;對選項B,第二次摸到綠球分兩種情況,第一次摸到綠球且第二也摸到綠球和第一次摸到紅球且第二次摸到綠球;對選項C,直接求出第一次摸到綠球且第二也摸到綠球的概率;對選項D,直接求出第一次摸到紅球且第二也摸到紅球的概率【詳解】對選項A,第一次摸到綠球的概率為:,故錯誤;對選項B,第二次摸到綠球的概率為:,故錯誤;對選項C,兩次都摸到綠球的概率為:,故正確;對選項D,兩次都摸到紅球的概率為:,故錯誤故選:C10、D【解析】當點P是線段EF中點時判斷①;假定存在點P,使得直線平面ACF,推理導(dǎo)出矛盾判斷②;利用線面角的定義轉(zhuǎn)化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點,而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當點P與G重合時,直線平面ACF,①正確;假定存在點P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點與D連線垂直于DG,因此,假設(shè)是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當P與E不重合時,,,而,則,當P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點睛】結(jié)論點睛:兩個平面互相垂直,則一個平面內(nèi)任意一點在另一個平面上的射影都在這兩個平面的交線上.11、C【解析】根據(jù)題意可設(shè),再根據(jù),求出,再利用三角函數(shù)的性質(zhì)即可得出答案.【詳解】解:由點為圓上任意一點,可設(shè),則,由,得,所以,則,則,其中,所以當時,取得最大值為22.故選:C.12、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.14、8【解析】根據(jù)給定條件求出拋物線C的焦點坐標,準線方程,再求出點A,B的橫坐標和即可計算作答.【詳解】拋物線C:焦點,準線方程為,依題意,直線l的方程為:,由消去x并整理得:,設(shè),則,于是得,所以線段AB的長為8.故答案為:815、【解析】設(shè)(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結(jié)合基本不等式即可求解詳解】如圖所示,設(shè)(),,則,,,,當且僅當即時等號成立,∴的最小值是.故答案為:16、【解析】由空間直角坐標系中點到軸的距離為計算可得【詳解】解:空間直角坐標系中,點到軸的距離為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關(guān)系即可判斷結(jié)果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設(shè)其方程為,利用圓心到直線的距離等于半徑計算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因為,所以圓C與圓M相交,【小問2詳解】①當直線l的斜率不存在時,直線l的方程為到圓心C距離為2,滿足題意;②當直線l的斜率存在時,設(shè)其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點與雙曲線的焦點重合,得到,進而可求出結(jié)果;(2)先由題意,得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,設(shè),根據(jù)韋達定理,得到,,再由以為直徑的圓過坐標原點,得到,進而可求出結(jié)果.詳解】(1)由題意知,∴,即,又雙曲線的焦點坐標為,橢圓的短軸端點與雙曲線的焦點重合,所以,∴,故橢圓的方程為.(2)解:由題意知直線的斜率存在,設(shè)直線的方程為由得:由得:設(shè),則,,∴因為以為直徑的圓過坐標原點,所以,.滿足條件故.【點睛】本題主要考查橢圓的方程,以及橢圓的應(yīng)用,熟記橢圓的標準方程,以及橢圓的簡單性質(zhì)即可,解決此類問題時,通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達定理、判別式等求解,屬于??碱}型.19、(1);(2)【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運算法則計算可得;【詳解】解:(1)因為所以,即(2)因為所以,即20、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對直線和分兩種情況討論:一種是兩條直線與坐標軸垂直,可求出兩條弦長度之和;二是當兩條直線斜率都存在時,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達定理,利用弦長公式可計算出的長度的表達式,然后利用相應(yīng)的代換可求出的長度表達式,將兩線段長度表達式相加,利用函數(shù)思想可求出兩條弦長的取值范圍最后將兩種情況的取值范圍進行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標準方程為;當兩條直線中有一條斜率為0時,另一條直線的斜率不存在,由題意易得;當兩條直線斜率都存在且不為0時,由知,設(shè)、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設(shè),,所以,,所以,,則綜合可知,的取值范圍是【點睛】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.21、(1)(2)【解析】(1)由定義證明數(shù)列是等差數(shù)列,再由得出通項公式;(2)先由求和公式得出,再由裂項相消求和法求和即可.【小問1詳解】由題意可知,,所以數(shù)列是公差的等差數(shù)列又,所以,故小問2詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論