版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆安徽省蚌埠二中數(shù)學(xué)高二上期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的兩個頂點分別為A、B,點P為雙曲線上除A、B外任意一點,且點P與點A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.32.在空間直角坐標(biāo)系中,點關(guān)于軸的對稱點為點,則點到直線的距離為()A. B.C. D.63.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設(shè)地球半徑為R,其近地點與地面的距離大約是,遠(yuǎn)地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.4.已知、、、是直線,、是平面,、、是點(、不重合),下列敘述錯誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則5.已知橢圓的兩焦點分別為,,P為橢圓上一點,且,則的面積等于()A.6 B.C. D.6.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定7.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個數(shù)是()①曲線C關(guān)于點(0,0)對稱;②曲線C關(guān)于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.38.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.9.點到直線的距離為A.1 B.2C.3 D.410.?dāng)?shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.2811.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.12.已知隨機(jī)變量X服從二項分布X~B(4,),()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,且,則_______.14.等差數(shù)列中,若,,則______,數(shù)列的前n項和為,則______15.設(shè),分別是橢圓C:的左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標(biāo)為___________16.已知,是橢圓:的兩個焦點,點在上,則的最大值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個焦點坐標(biāo)為,離心率.(1)求橢圓的方程;(2)設(shè)為坐標(biāo)原點,橢圓與直線相交于兩個不同的點A、B,線段AB的中點為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設(shè)橢圓上一點R的橫坐標(biāo)為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點、若直線PR與QR的傾斜角互補,求直線PQ的斜率的所有可能值組成的集合.18.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和19.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點,求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.20.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點.(1)求雙曲線的方程;(2)已知雙曲線的左右焦點分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點,求的面積.21.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標(biāo)原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標(biāo)準(zhǔn)方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由22.(10分)【2018年新課標(biāo)I卷文】已知函數(shù)(1)設(shè)是的極值點.求,并求的單調(diào)區(qū)間;(2)證明:當(dāng)時,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進(jìn)而求得離心率【詳解】根據(jù)題意得到設(shè),因為,所以,所以,則故選:C.2、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.3、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A4、D【解析】由公理2可判斷A選項;由公理3可判斷B選項;利用平行線的傳遞性可判斷C選項;直接判斷線線位置關(guān)系,可判斷D選項.【詳解】對于A選項,由公理2可知,若,,,,則,A對;對于B選項,由公理3可知,若,,,則,B對;對于C選項,由空間中平行線的傳遞性可知,若,,則,C對;對于D選項,若,,則與平行、相交或異面,D錯.故選:D.5、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點,∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B6、A【解析】根據(jù)橢圓的定義,即可得答案.【詳解】由題意可得,根據(jù)橢圓定義可得,P點的軌跡為橢圓,故選:A7、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關(guān)于原點對稱;②將點(y,x)代入后依然為,故曲線C關(guān)于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠(yuǎn)的點的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.8、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.9、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.10、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,則數(shù)列的前8項和為.故選:C11、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因為,所以,所以在上單調(diào)遞增,又,,,因為,所以,所以.故選:C12、D【解析】利用二項分布概率計算公式,計算出正確選項.【詳解】∵隨機(jī)變量X服從二項分布X~B(4,),∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)數(shù)列的遞推公式,發(fā)現(xiàn)規(guī)律,即數(shù)列為周期數(shù)列,然后求出即可【詳解】根據(jù)題意可得:,,,故數(shù)列為周期數(shù)列可得:故答案為:14、①.②.【解析】設(shè)等差數(shù)列公差為d,根據(jù)等差數(shù)列的性質(zhì)即可求通項公式;,采用裂項相消的方法求.【詳解】設(shè)等差數(shù)列公差為d,,,;∵,∴.故答案為:;.15、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:16、9【解析】根據(jù)橢圓的定義可得,結(jié)合基本不等式即可求得的最大值.【詳解】∵在橢圓上∴∴根據(jù)基本不等式可得,即,當(dāng)且僅當(dāng)時取等號.故答案為:9.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計算出AB的長.(3)設(shè)出直線PR的方程,再與橢圓的方程聯(lián)立求出點P坐標(biāo),同理可得點Q坐標(biāo),計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點,直線OM斜率為,解得,因此,,所以線段AB的長為.【小問3詳解】由(1)知,點,依題意,設(shè)直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設(shè)點,則有,顯然直線QR的斜率為-t,設(shè)點,同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點睛】方法點睛:求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出a,b;若焦點位置不明確,則需要分焦點在x軸上和y軸上兩種情況討論.18、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得,,所以【點睛】關(guān)于數(shù)列前項和的求和方法:分組求和法:兩個數(shù)列等差或者等比數(shù)列相加時利用分組求和法計算;裂項相加法:數(shù)列的通項公式為分式時可考慮裂項相消法求和;錯位相減法:等差乘以等比數(shù)列的情況利用錯位相減法求和.19、(1)證明見解析(2)【解析】(1)通過構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標(biāo)系,通過兩個面的法向量夾角的余弦值求出面面夾角的余弦值【小問1詳解】證明:設(shè)為的中點,連接,,因為,分別為,的中點.所以且,又,為的中點,所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問2詳解】取的中點,連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點,∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,,,,.設(shè)為平面的一個法向量,則有即取可取,設(shè)為平面的一個法向量,則有即可取,所以,設(shè)平面與平面的夾角為,則,∴,即平面與平面夾角的余弦值為.20、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關(guān)系,結(jié)合弦長公式、點線距離公式及三角形面積公式求的面積.【詳解】(1)設(shè)所求雙曲線方程為,代入點得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設(shè),聯(lián)立得,滿足且,,由弦長公式得,點到直線的距離.所以【點睛】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關(guān)系求原點與交點構(gòu)成三角形的面積,綜合應(yīng)用了弦長公式、點線距離公式、三角形面積公式,屬于基礎(chǔ)題.21、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時,點M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當(dāng)直線或的斜率不存在時,點M的坐標(biāo)為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.22、(1)a=;f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增.(2)證明見解析.【解析】分析:(1)先確定函數(shù)的定義域,對函數(shù)求導(dǎo),利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時,f(x)≥,之后構(gòu)造新函數(shù)g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結(jié)果.詳解:(1)f(x)的定義域為,f′(x)=aex–由題設(shè)知,f′(2)=0,所以a=從而f(x)=,f′(x)=當(dāng)0<x<2時,f′(x)<0;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家禽養(yǎng)殖購銷合同范例
- 2025試用期勞動合同是否合法
- 電梯過戶合同范例
- 圍欄安裝承攬合同范例
- 土地青苗轉(zhuǎn)讓合同范例
- 醫(yī)生聘用合同范例簡易
- 皖江工學(xué)院《史學(xué)前沿講座下》2023-2024學(xué)年第一學(xué)期期末試卷
- 租借婚紗合同范例
- 吊車售賣協(xié)議合同范例
- 借錢蓋房合同范例
- 《中國傳統(tǒng)民居建筑》課件
- 2024年九年級語文中考專題復(fù)習(xí)現(xiàn)代文閱讀(含答案)
- JJF 2163-2024漆膜劃格器校準(zhǔn)規(guī)范
- 浙江省寧波市慈溪市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含解析
- 《中華人民共和國文物保護(hù)法》知識專題培訓(xùn)
- 2024年高考全國甲卷英語試卷(含答案)
- 血液透析服務(wù)協(xié)議
- 教師師德師風(fēng)的培訓(xùn)
- 肺炎支原體肺炎-4
- GB/T 44491.1-2024地理信息數(shù)字?jǐn)?shù)據(jù)和元數(shù)據(jù)保存第1部分:基礎(chǔ)
- 財務(wù)報表練習(xí)題及答案
評論
0/150
提交評論