2024屆安徽省合肥一中、六中、八中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)
2024屆安徽省合肥一中、六中、八中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)
2024屆安徽省合肥一中、六中、八中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)
2024屆安徽省合肥一中、六中、八中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)
2024屆安徽省合肥一中、六中、八中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆安徽省合肥一中、六中、八中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.方程表示的曲線是()A.一個(gè)橢圓和一條直線 B.一個(gè)橢圓和一條射線C.一條射線 D.一個(gè)橢圓2.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.453.直線分別與軸,軸交于A,B兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是()A. B.C D.4.已知圓:的面積被直線平分,圓:,則圓與圓的位置關(guān)系是()A.相離 B.相交C.內(nèi)切 D.外切5.已知函數(shù)為偶函數(shù),且當(dāng)時(shí),,則不等式的解集為()A. B.C. D.6.已知,,若,則()A.9 B.6C.5 D.37.我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請(qǐng)問第二天織布的尺數(shù)是()A. B.C. D.8.天文學(xué)家卡西尼在研究土星及其衛(wèi)星的運(yùn)行規(guī)律時(shí)發(fā)現(xiàn):同一平面內(nèi)到兩個(gè)定點(diǎn)的距離之積為常數(shù)的點(diǎn)的軌跡是卡西尼卵形線.在平面直角坐標(biāo)系中,設(shè)定點(diǎn)為,,,點(diǎn)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)滿足(且為常數(shù)),化簡(jiǎn)得曲線E:.當(dāng),時(shí),關(guān)于曲線E有下列四個(gè)命題:①曲線E既是軸對(duì)稱圖形,又是中心對(duì)稱圖形;②的最大值為;③的最小值為;④面積的最大值為.其中,正確命題的個(gè)數(shù)為()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)9.已知關(guān)于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.10.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.11.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實(shí)數(shù)a的值為()A.﹣2 B.C.1 D.1或﹣212.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知,則曲線在點(diǎn)處的切線方程是______.14.若命題“”是假命題,則a的取值范圍是_______.15.已知,,若,則______16.某校老年、中年和青年教師的人數(shù)見如表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有人,則該樣本的老年教師人數(shù)為______.類別老年教師中年教師青年教師合計(jì)人數(shù)900180016004300三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn),直線:,直線m過點(diǎn)N且與垂直,直線m交圓于兩點(diǎn)A,B.(1)求直線m的方程;(2)求弦AB的長(zhǎng).18.(12分)已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點(diǎn),且∠BAD=,求∠ADC的正弦值19.(12分)已知雙曲線的左、右焦點(diǎn)分別為,,動(dòng)點(diǎn)M滿足(1)求動(dòng)點(diǎn)M的軌跡方程;(2)若動(dòng)點(diǎn)M在雙曲線C上,設(shè)雙曲線C的左支上有兩個(gè)不同的點(diǎn)P,Q,點(diǎn),且,直線NQ與雙曲線C交于另一點(diǎn)B.證明:動(dòng)直線PB經(jīng)過定點(diǎn)20.(12分)已知拋物線的方程為,點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)(1)求△OAB面積的最小值(為坐標(biāo)原點(diǎn));(2)是否為定值?若是,求出該定值;若不是,說明理由21.(12分)如圖1,四邊形為直角梯形,,,,,為上一點(diǎn),為的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說明理由.22.(10分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)已知,曲線與曲線相交于A,B兩點(diǎn),求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個(gè)橢圓或一條直線.故選:A.2、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,則.故選:B.3、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點(diǎn)到直線的距離.【詳解】與x,y軸的交點(diǎn),分別為,,點(diǎn)在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A4、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個(gè)圓的位置關(guān)系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標(biāo)準(zhǔn)方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個(gè)圓外切,故選:D.5、D【解析】結(jié)合導(dǎo)數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡(jiǎn)不等式來求得不等式的解集.【詳解】當(dāng)時(shí),單調(diào)遞增,,所以單調(diào)遞增.因?yàn)槭桥己瘮?shù),所以當(dāng)時(shí),單調(diào)遞減.,,,或.即不等式的解集為.故選:D6、D【解析】根據(jù)空間向量垂直的坐標(biāo)表示即可求解.【詳解】.故選:D.7、C【解析】根據(jù)等比數(shù)列求和公式求出首項(xiàng)即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項(xiàng)為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C8、D【解析】①:根據(jù)軸對(duì)稱圖形、中心對(duì)稱圖形的方程特征進(jìn)行判斷即可;②:結(jié)合兩點(diǎn)間距離公式、曲線方程特征進(jìn)行判斷即可;③:根據(jù)卡西尼卵形線的定義,結(jié)合基本不等式進(jìn)行判斷即可;④:根據(jù)方程特征,結(jié)合三角形面積公式進(jìn)行判斷即可.【詳解】當(dāng),時(shí),.①:因?yàn)橐源匠滩蛔?,以代方程不變,同時(shí)代,以代方程不變,所以曲線E既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,因此本命題正確;②:由,所以有,所以,當(dāng)時(shí)成立,因此本命題正確;③:因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),取等號(hào),因此本命題正確;④:,因?yàn)?,所以,的面積為,因此本命題正確,故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用方程特征進(jìn)行求解判斷是解題的關(guān)鍵.9、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數(shù)量關(guān)系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價(jià)于,解得或.故選:A.10、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.11、B【解析】由題意,利用兩直線垂直的性質(zhì),兩直線垂直時(shí),一次項(xiàng)對(duì)應(yīng)系數(shù)之積的和等于0,計(jì)算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B12、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),得到,寫出切線方程.【詳解】因?yàn)?,所以,則,所以曲線在點(diǎn)處的切線方程是,即,故答案為:14、【解析】依題意可得是真命題,參變分離得到,再利用基本不等式計(jì)算可得;【詳解】解:因?yàn)槊}“”是假命題,所以命題“”是真命題,即,所以,因?yàn)?,?dāng)且僅當(dāng)即時(shí)取等號(hào),所以,即故答案:15、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:16、【解析】由題意,總體中青年教師與老年教師比例為;設(shè)樣本中老年教師的人數(shù)為x,由分層抽樣的性質(zhì)可得總體與樣本中青年教師與老年教師的比例相等,即,解得.故答案為.考點(diǎn):分層抽樣.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出斜率,用點(diǎn)斜式求直線方程;(2)利用垂徑定理求弦長(zhǎng).【小問1詳解】因?yàn)橹本€:,所以直線的斜率為.因?yàn)橹本€m過點(diǎn)N且與垂直,所以直線的斜率為,又過點(diǎn),所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長(zhǎng)18、(1)(2)【解析】(1)利用面積公式及余弦定理可求解;(2)由正弦定理得到,再運(yùn)用同角函數(shù)的關(guān)系得到,最后運(yùn)用正弦的兩角和公式求解即可.【小問1詳解】∵,,,∴由余弦定理:,∴【小問2詳解】在中,由正弦定理得,∴,易知B為銳角,∴,∴19、(1)(2)證明見解析【解析】(1)根據(jù)雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設(shè)直線BP的方程為,設(shè),,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達(dá)定理,利用N、B、Q三點(diǎn)共線,且NQ斜率存在,由斜率相等得出的關(guān)系,代入韋達(dá)定理的結(jié)論可求得的值,從而得直線BP所過定點(diǎn)【小問1詳解】因?yàn)?,所以,?dòng)點(diǎn)M的軌跡是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的左支,則,可得,,所以,點(diǎn)M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜率存在且不為0,設(shè)直線BP的方程為,設(shè),,則,聯(lián)立,化簡(jiǎn)得:,直線與雙曲線左支、右支各有一個(gè)交點(diǎn),需滿足或,∴,,又,又N、B、Q三點(diǎn)共線,且NQ斜率存在,∴,即,∴,∴,∴,化簡(jiǎn)得:,∴,∴,即,滿足判別式大于0,即直線BP方程為,所以直線BP過定點(diǎn)20、(1);(2)是,該定值.【解析】(1)根據(jù)弦長(zhǎng)公式、點(diǎn)到直線距離公式,結(jié)合三角形面積公式進(jìn)行求解即可;(2)根據(jù)兩點(diǎn)間距離公式,結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問1詳解】顯然直線存在斜率,設(shè)直線的方程為:,所以有,設(shè),則有,,原點(diǎn)到直線的距離為:,△OAB的面積為:,當(dāng)時(shí),有最小值,最小值為;【小問2詳解】是定值,理由如下:由(1)可知:,,【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1)證明見解析.(2)存在點(diǎn),為線段中點(diǎn)【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關(guān)系不變.又因?yàn)槠矫嫫矫妫移矫嫫矫?,所以平面,因?yàn)槠矫?,所以平面平?(2)在中,由,為的中點(diǎn),可得.又因?yàn)槠矫嫫矫妫移矫嫫矫?,所以平面,則以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,則,,設(shè)平面的法向量為,則,令,可得平面的法向量為,假設(shè)存在點(diǎn)使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設(shè)平面的法向量為,可得,令得,∴,解得,因此存在點(diǎn)且為線段中點(diǎn)時(shí)使平面與平面所成角的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解及應(yīng)用,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論