2023-2024學年江蘇南京鼓樓區(qū)高二數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第1頁
2023-2024學年江蘇南京鼓樓區(qū)高二數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第2頁
2023-2024學年江蘇南京鼓樓區(qū)高二數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第3頁
2023-2024學年江蘇南京鼓樓區(qū)高二數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第4頁
2023-2024學年江蘇南京鼓樓區(qū)高二數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年江蘇南京鼓樓區(qū)高二數(shù)學第一學期期末復(fù)習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),在上隨機取一個實數(shù),則使得成立的概率為()A. B.C. D.2.已知x,y是實數(shù),且,則的最大值是()A. B.C. D.3.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離4.執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.6.拋物線的焦點到準線的距離是A.2 B.4C. D.7.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.過拋物線C:的準線上任意一點作拋物線的切線,切點為,若在軸上存在定點,使得恒成立,則點的坐標為()A. B.C. D.9.已知直線與直線垂直,則()A. B.C. D.10.已知是拋物線上的一點,是拋物線的焦點,若以為始邊,為終邊的角,則等于()A. B.C. D.11.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件12.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與圓有公共點,則b的取值范圍是_____14.對于實數(shù)表示不超過的最大整數(shù),如.已知數(shù)列的通項公式,前項和為,則___________.15.若等比數(shù)列的前n項和為,且,則__________.16.若曲線在點處的切線斜率為,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍18.(12分)已知函數(shù)f(x)=ax-2lnx(1)討論f(x)的單調(diào)性;(2)設(shè)函數(shù)g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍19.(12分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標原點,當m為何值時,=0.20.(12分)已知圓C的圓心C在直線上,且與直線相切于點.(1)求圓C的方程;(2)過點的直線與圓C交于兩點,線段的中點為M,直線與直線的交點為N.判斷是否為定值.若是,求出這個定值,若不是,說明理由.21.(12分)已知點,,線段是圓的直徑.(1)求圓的方程;(2)過點的直線與圓相交于,兩點,且,求直線的方程.22.(10分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機取一實數(shù),則實數(shù)滿足不等式的概率為故選:B2、D【解析】將方程化為圓的標準方程,則的幾何意義是圓上一點與點連線的斜率,進而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點與點A連線的斜率,設(shè),即,當此直線與圓相切時,斜率最大或最小,當切線位于切線AB時斜率最大.此時,,,所以的最大值為.故選:D3、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標為,半徑,將圓化為標準方程為,其圓心的坐標為,半徑,圓心距,兩圓內(nèi)切,故選:B4、B【解析】根據(jù)程序框圖的循環(huán)邏輯寫出其執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】由程序框圖的邏輯,執(zhí)行步驟如下:1、:執(zhí)行循環(huán),,;2、:執(zhí)行循環(huán),,;3、:執(zhí)行循環(huán),,;4、:執(zhí)行循環(huán),,;5、:執(zhí)行循環(huán),,;6、:不成立,跳出循環(huán).∴輸出的值為.故選:B.5、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證6、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準線的距離是,故選D.考點:1、拋物線的標準方程;2、拋物線的幾何性質(zhì).7、D【解析】根據(jù)直線、平面的位置關(guān)系,應(yīng)用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內(nèi),故不一定成立,即必要性不成立.故選:D.8、D【解析】設(shè)切點,點,聯(lián)立直線的方程和拋物線C的準線方程可得,將問題轉(zhuǎn)化為對任意點恒成立,可得,解出,從而求出答案【詳解】設(shè)切點,點由題意,拋物線C的準線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點恒成立,也就是對任意點恒成立因為,,則,即對任意實數(shù)恒成立,所以,即,所以,故選:D【點睛】一般表示拋物線的切線方程時可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導數(shù)的幾何意義求解切線斜率,再代入計算.9、D【解析】根據(jù)互相垂直兩直線的斜率關(guān)系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D10、D【解析】設(shè)點,取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設(shè)點,其中,則,,取,則,可得,因為,可得,解得,則,因此,.故選:D.11、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B12、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標為.同理可得,點的坐標為.故的面積為,選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)取值范圍是.故答案為:14、54【解析】由,利用裂項相消法求得,再由的定義求解.【詳解】由已知可得:,,當時,,;當時,,;當時,,;當時,,;當時,;;所以.故答案為:54.15、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.16、【解析】由導數(shù)的幾何意義求解即可【詳解】,,解得.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)焦點坐標為,,頂點坐標為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點坐標、頂點坐標和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當時,雙曲線方程化為,所以,,,所以焦點坐標為,,頂點坐標為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【點睛】本題根據(jù)雙曲線方程求焦點坐標、頂點坐標和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.18、(1)答案見解析;(2).【解析】(1)根據(jù)實數(shù)a的正負性,結(jié)合導數(shù)的性質(zhì)分類討論求解即可;(2)利用常變量分離法,通過構(gòu)造函數(shù),利用導數(shù)的性質(zhì)進行求解即可.【小問1詳解】當a≤0時,在(0,+∞)上恒成立;當a>0時,令得;令得;綜上:a≤0時f(x)在(0,+∞)上單調(diào)遞減;a>0時,f(x)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點睛】關(guān)鍵點睛:運用常變量分離法利用導數(shù)的性質(zhì)是解題的關(guān)鍵.19、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點得出的值,進而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達定理結(jié)合數(shù)量積公式證明即可【小問1詳解】由題意,橢圓=1的右焦點為(1,0),拋物線y2=2px的焦點為(,0),所以,解得p=2,所以拋物線的方程為y2=4x;【小問2詳解】因為直線y=x+m與拋物線C交于A,B兩點,設(shè)A(x1,y1),B(x2,y2),聯(lián)立方程組,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因為,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.20、(1)(2)【解析】(1)設(shè)過點且與直線垂直的直線為,將代入直線方程,即可求出,再與求交點坐標,得到圓心坐標,再求出半徑,即可得解;(2)分直線的斜率存在與不存在兩種情況討論,當斜率不存在直接求出、的坐標,即可求出,當直線的斜率存在,設(shè)直線為、、,聯(lián)立直線與圓的方程,消元列出韋達定理,即可表示出的坐標,再求出的坐標,即可表示出、,即可得解;【小問1詳解】解:設(shè)過點且與直線垂直的直線為,則,解得,即,由,解得,即圓心坐標為,所以半徑,所以圓的方程為【小問2詳解】解:當直線的斜率存在時,設(shè)過點的直線為,所以,消去得,設(shè)、,則,,所以,所以的中點,由解得,即,所以,,所以;當直線的斜率不存在時,直線的方程為,由,解得或,即、,所以,所以又解得,即,所以,所以,綜上可得.21、(1);(2)或.【解析】(1)AB兩點的中點為圓心,AB兩點距離的一半為半徑;(2)分斜率存在和不存在,根據(jù)垂徑定理即可求解.【小問1詳解】已知點,,線段是圓M的直徑,則圓心坐標為,∴半徑,∴圓的方程為;【小問2詳解】由(1)可知圓的圓心,半徑為.設(shè)為中點,則,,則.當?shù)男甭什淮嬖跁r,的方程為,此時,符合題意;當?shù)男甭蚀嬖跁r,設(shè)的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論