2024屆內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
2024屆內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
2024屆內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
2024屆內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
2024屆內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.2.已知雙曲線的左焦點為F,O為坐標(biāo)原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.3.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則4.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.5.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-66.平行六面體中,若,則()A. B.1C. D.7.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.8.在數(shù)列中,,,則()A. B.C. D.9.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.10.已知且,則的值為()A.3 B.4C.5 D.611.在正方體中,E,F(xiàn)分別為AB,CD的中點,則與平面所成的角的正弦值為()A. B.C. D.12.若直線與曲線有兩個公共點,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線,則切線方程為______.14.已知直線與平行,則___________.15.已知拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,則p=__16.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:方程表示焦點在軸上的橢圓,:方程表示焦點在軸上的雙曲線,其中.(1)若“”為真命題,求的取值范圍:(2)若“”為假命題,“”為真命題,求的取值范圍.18.(12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.(1)求橢圓的方程;(2)若以為直徑的圓過坐標(biāo)原點,求的值.19.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值20.(12分)已知向量,.(1)計算和;(2)求.21.(12分)已知數(shù)列和中,,且,.(1)寫出,,,,猜想數(shù)列和的通項公式并證明;(2)若對于任意都有,求的取值范圍.22.(10分)在數(shù)列中,,,且對任意的,都有.(1)數(shù)列的通項公式;(2)設(shè)數(shù)列,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.2、C【解析】由題意可得且,從而求出點的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設(shè)點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C3、D【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運(yùn)算法則分別計算函數(shù)的導(dǎo)數(shù),即可判斷選項.【詳解】A.若,則,故A錯誤;B.若,則,故B錯誤;C.若,則,故C錯誤;D.若,則,故D正確.故選:D4、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎(chǔ)題.5、D【解析】根據(jù)向量共面列方程,化簡求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D6、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.7、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點共線時,最小,再結(jié)合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點為,∴點P到準(zhǔn)線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A8、A【解析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.9、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.10、C【解析】由空間向量數(shù)量積的坐標(biāo)運(yùn)算求解【詳解】由已知,解得故選:C11、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長為2,、F分別為AB、CD的中點,由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因為,所以即為所求角,所以.故選:B12、D【解析】由題可知,曲線表示一個半圓,結(jié)合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當(dāng)直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當(dāng)直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當(dāng)直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出切點與圓心連線的斜率后可得切線方程.【詳解】因為點在圓上,故切線必垂直于切點與圓心連線,而切點與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.14、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進(jìn)行檢驗即可求解.【詳解】因為直線與平行,所以,解得或,又因為時,,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點睛】(1)當(dāng)直線的方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x,y的系數(shù)不能同時為零這一隱含條件(2)在判斷兩直線平行、垂直時,也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論15、2【解析】根據(jù)已知條件,結(jié)合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:216、【解析】設(shè)左焦點為,連接,.則四邊形是平行四邊形,可得.設(shè),由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設(shè)左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設(shè),則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、點到直線的距離公式、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)先假設(shè)命題為真命題,求出的取值范圍,為真命題,取補(bǔ)集即可(2)假設(shè)命題為真命題,求出的取值范圍,根據(jù)題意,則命題假設(shè)和命題一真一假,分類討論求的取值范圍【小問1詳解】解:若為真命題,則,解得,若“”為真命題,則為假命題,或;【小問2詳解】若為真命題,則解得,若“”為假命題,則“”為真命題,則與一真一假,①若真假,則解得,②若真假,則解得,綜上所述,,即的取值范圍為.18、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點與雙曲線的焦點重合,得到,進(jìn)而可求出結(jié)果;(2)先由題意,得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,設(shè),根據(jù)韋達(dá)定理,得到,,再由以為直徑的圓過坐標(biāo)原點,得到,進(jìn)而可求出結(jié)果.詳解】(1)由題意知,∴,即,又雙曲線的焦點坐標(biāo)為,橢圓的短軸端點與雙曲線的焦點重合,所以,∴,故橢圓的方程為.(2)解:由題意知直線的斜率存在,設(shè)直線的方程為由得:由得:設(shè),則,,∴因為以為直徑的圓過坐標(biāo)原點,所以,.滿足條件故.【點睛】本題主要考查橢圓的方程,以及橢圓的應(yīng)用,熟記橢圓的標(biāo)準(zhǔn)方程,以及橢圓的簡單性質(zhì)即可,解決此類問題時,通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理、判別式等求解,屬于??碱}型.19、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,設(shè),結(jié)合已知確定相關(guān)點坐標(biāo),進(jìn)而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標(biāo)表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標(biāo)系,設(shè),則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設(shè)與平面所成的角為,又,,所以.20、(1),;(2).【解析】(1)利用空間向量的坐標(biāo)運(yùn)算可求得的坐標(biāo),利用向量的模長公式可求得的值;(2)計算出,結(jié)合的取值范圍可求得結(jié)果.【詳解】(1),;(2),,因此,.【點睛】本題考查空間向量的坐標(biāo)運(yùn)算,同時也考查了利用空間向量的數(shù)量積計算向量的夾角,考查計算能力,屬于基礎(chǔ)題.21、(1),,,證明見解析(2)【解析】(1)已知兩式相加化簡可得是首項為2,公比為2的等比數(shù)列,則,兩式相減化簡可得是首項為2,公差為2的等差數(shù)列,則,(2)由題意可得只需要,令,由和解不等式可求出的最小值,從而可求得的取值范圍【小問1詳解】由已知得,猜想,,由題得,所以易知,即所以是首項為2,公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論