2024屆四川省中江縣龍臺中學高二上數(shù)學期末聯(lián)考試題含解析_第1頁
2024屆四川省中江縣龍臺中學高二上數(shù)學期末聯(lián)考試題含解析_第2頁
2024屆四川省中江縣龍臺中學高二上數(shù)學期末聯(lián)考試題含解析_第3頁
2024屆四川省中江縣龍臺中學高二上數(shù)學期末聯(lián)考試題含解析_第4頁
2024屆四川省中江縣龍臺中學高二上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省中江縣龍臺中學高二上數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.2.函數(shù)的圖象大致為()A. B.C. D.3.拋物線的焦點到準線的距離是A. B.1C. D.4.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上5.在四面體中,空間的一點滿足,若共面,則()A. B.C. D.6.甲、乙兩名射擊運動員進行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.987.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.中國古代數(shù)學名著《算法統(tǒng)宗》中有這樣一個問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級遞減石分這些俸糧,問,每個人各分得多少俸糧?在這個問題中,正三品分得俸糧是()A.石 B.石C.石 D.石9.直線分別交坐標軸于A,B兩點,O為坐標原點,三角形OAB的內切圓上有動點P,則的最小值為()A.16 B.18C.20 D.2210.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.11.已知雙曲線的左右焦點分別是和,點關于漸近線的對稱點恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.312.已知、分別是橢圓的左、右焦點,A是橢圓上一動點,圓C與的延長線、的延長線以及線段相切,若為其中一個切點,則()A. B.C. D.與2的大小關系不確定二、填空題:本題共4小題,每小題5分,共20分。13.設,則動點P的軌跡方程為________14.某位同學參加物理、化學、政治科目的等級考,依據(jù)以往成績估算該同學在物理、化學、政治科目等級中達的概率分別為假設各門科目考試的結果互不影響,則該同學等級考至多有1門學科沒有獲得的概率為___________.15.在正項等比數(shù)列{an}中,若,與的等差中項為12,則等于_______.16.曲線的一條切線的斜率為,該切線的方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)證明:;(2)已知:,,且,求證:.18.(12分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標19.(12分)已知直線過點,且其傾斜角是直線的傾斜角的(1)求直線的方程;(2)若直線與直線平行,且點到直線的距離是,求直線的方程20.(12分)已知拋物線C的對稱軸是y軸,點在曲線C上.(1)求拋物線的標準方程;(2)過拋物線焦點的傾斜角為直線l與拋物線交于A、B兩點,求線段AB的長度.21.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍22.(10分)已知關于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結果.【詳解】由余弦定理得,,∴,∴,故選:A2、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關于坐標原點對稱,選項CD錯誤;當時,,選項B錯誤.故選:A.【點睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項3、D【解析】,,所以拋物線的焦點到其準線的距離是,故選D.4、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C5、D【解析】根據(jù)四點共面的向量表示,可得結果.【詳解】由共面知,故選:【點睛】本題主要考查空間中四點共面的向量表示,屬基礎題.6、A【解析】依據(jù)獨立事件同時發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A7、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點睛】本題考查直線一般式中直線與直線垂直的系數(shù)關系,考查充分性和必要性的判斷,是基礎題.8、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項和求,進而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.9、B【解析】由題意,求出內切圓的半徑和圓心坐標,設,則,由表示內切圓上的動點P到定點的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標軸于A,B兩點,所以設,則,因為,所以三角形OAB的內切圓半徑,內切圓圓心為,所以內切圓的方程為,設,則,因為表示內切圓上的動點P到定點的距離的平方,且在內切圓內,所以,所以,,即的最小值為18,故選:B.10、B【解析】利用余弦定理結合角的范圍可求得角的值,再利用三角形的內角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.11、B【解析】首先求出F1到漸近線的距離,利用F1關于漸近線的對稱點恰落在圓上,可得直角三角形,利用勾股定理得到關于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設,則到漸近線的距離為.設關于漸近線的對稱點為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點.又O是F1P的中點,∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.12、A【解析】由題意知,圓C是的旁切圓,點是圓C與軸的切點,設圓C與直線的延長線、分別相切于點、,由切線的性質可知:,,,結合橢圓的定義,即可得出結果.【詳解】由題意知,圓C是的旁切圓,點是圓C與軸的切點,設圓C與直線的延長線、分別相切于點、,則由切線的性質可知:,,,所以,所以,所以.故選A【點睛】本題主要考查圓與圓錐曲線的綜合,熟記橢圓的定義,以及切線的性質即可,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義可得答案.【詳解】因為,所以動點P的軌跡是焦點為A,B,實軸長為4的雙曲線的上支.因為,所以,所以動點P的軌跡方程為故答案為:.14、【解析】考慮3門或者2門兩種情況,計算概率得到答案.【詳解】.故答案為:.15、128【解析】先根據(jù)條件利用等比數(shù)列的通項公式列方程組求出首項和公差,進而可得.【詳解】設正項等比數(shù)列{an}的公比為,由已知,得,①,又,②,由①②得,故答案為:128.16、【解析】使用導數(shù)運算公式求得切點處的導數(shù)值,并根據(jù)導數(shù)的幾何意義等于切線斜率求得切點的橫坐標,進而得到切點坐標,然后利用點斜式求出切線方程即可.【詳解】的導數(shù)為,設切點為,可得,解得,即有切點,則切線的方程為,即.故答案為:.【點睛】本題考查導數(shù)的加法運算,導數(shù)的幾何意義,和求切線方程,難度不大,關鍵是正確的使用導數(shù)運算公式求得切點處的導數(shù)值,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1)要證成立,即證,即證,即證,而顯然成立,故成立;(2)已知,,且,則,當且僅當時,等號成立,故.18、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據(jù)頂點為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設,,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關系得到,從而得到直線恒過的定點.【詳解】(1)一個頂點為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設,,此時,與題設矛盾,故直線l斜率必存在設,,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過定點【點睛】方法點睛:定點問題,一般從三個方法把握:(1)從特殊情況開始,求出定點,再證明定點、定值與變量無關;(2)直接推理,計算,在整個過程找到參數(shù)之間的關系,代入直線,得到定點.19、(1);(2)或【解析】(1)先求得直線的傾斜角,由此求得直線的傾斜角和斜率,進而求得直線的方程;(2)設出直線的方程,根據(jù)點到直線的距離列方程,由此求解出直線的方程【詳解】解(1)直線的傾斜角為,∴直線的傾斜角為,斜率為,又直線過點,∴直線的方程為,即;(2)設直線的方程為,則點到直線的距離,解得或∴直線的方程為或20、(1)(2)16【解析】(1)設拋物線的標準方程為:,再代入求解即可.(2)根據(jù)焦點弦公式求解即可.【小問1詳解】由題意知拋物線C的對稱軸是y軸,點在曲線C上,所以拋物線開口向上,設拋物線的標準方程為:,代入點的坐標得:,解得則拋物線的標準方程為:.【小問2詳解】焦點,則直線的方程是,設,,由得,,所以,則,故.21、(1)(2)【解析】(1)根據(jù)橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關系,利用直線方程求出點S、T的坐標,再根據(jù)確定的表達式,將根與系數(shù)的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論