安徽省合肥市肥東中學2023-2024學年高二數學第一學期期末調研試題含解析_第1頁
安徽省合肥市肥東中學2023-2024學年高二數學第一學期期末調研試題含解析_第2頁
安徽省合肥市肥東中學2023-2024學年高二數學第一學期期末調研試題含解析_第3頁
安徽省合肥市肥東中學2023-2024學年高二數學第一學期期末調研試題含解析_第4頁
安徽省合肥市肥東中學2023-2024學年高二數學第一學期期末調研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥市肥東中學2023-2024學年高二數學第一學期期末調研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數列滿足,則的值為()A.2 B.C. D.2.以下說法:①將一組數據中的每一個數據都加上或減去同一個常數后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關關系的兩個變量的相關系數為,那么越接近于0,之間的線性相關程度越高;⑤在一個列聯表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯的把握就越大。其中錯誤的個數是()A.0 B.1C.2 D.33.橢圓的長軸長為()A. B.C. D.4.已知函數的圖象如圖所示,則其導函數的圖象大致形狀為()A. B.C. D.5.已知向量,若,則()A. B.5C.4 D.6.已知等差數列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.147.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.8.已知函數,則等于()A.0 B.2C. D.9.已知拋物線的焦點為F,點A在拋物線上,直線FA與拋物線的準線交于點M,O為坐標原點.若,且,則()A.1 B.2C.3 D.410.如下圖,邊長為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點,下列說法錯誤的是()A. B.C. D.到平面MON的距離為111.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.12.已知數列的通項公式為,則()A.12 B.14C.16 D.18二、填空題:本題共4小題,每小題5分,共20分。13.與雙曲線有共同的漸近線,并且經過點的雙曲線方程是______14.已知曲線,則曲線在點處的切線方程為______15.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標準方程為________16.數學家歐拉年在其所著的《三角形幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點和圓.(1)求圓的圓心坐標和半徑;(2)設為圓上的點,求的取值范圍.18.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分別為線段AD,DC,PB的中點.(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.19.(12分)如圖,在三棱錐中,側面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值20.(12分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.21.(12分)已知點是圓:上任意一點,是圓內一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由22.(10分)已知數列是公比為正數的等比數列,且,.(1)求數列的通項公式;(2)若,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】通過列舉得到數列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.2、C【詳解】方差反映一組數據的波動大小,將一組數據中的每個數據都加上或減去同一個常數后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據線性回歸分析中相關系數的定義:在線性回歸分析中,相關系數為r,越接近于1,相關程度越大,故④不正確;對于觀察值來說,越大,“x與y有關系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.3、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.4、A【解析】利用f(x)先單調遞增的速度由快到慢,再由慢到快,結合導數的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數f(x)先單調遞增的速度由快到慢,再由慢到快,由導數的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.5、B【解析】根據向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B6、A【解析】由等差數列的性質可知,再代入等差數列的前項和公式求解.【詳解】數列{an}是等差數列,,那么,所以.故選:A.【點睛】本題考查等差數列的性質和前項和,屬于基礎題型.7、B【解析】根據雙曲線的一條漸近線方程為,可得,再結合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.8、D【解析】先通過誘導公式將函數化簡,進而求出導函數,然后算出答案.【詳解】由題意,,故選:D.9、D【解析】設,由和在拋物線上,求出和,利用求出p.【詳解】過A作AP垂直x軸與P.拋物線的焦點為,準線方程為.設,因為,所以,解得:.因為在拋物線上,則.所以,即,解得:.故選:D10、D【解析】建立空間直角坐標系,進而根據空間向量的坐標運算判斷A,B,C;對D,算出平面MON的法向量,進而求出向量在該法向量方向上投影的絕對值,即為所求距離.【詳解】如圖建立空間直角坐標系,則.對A,,則,則A正確;對B,,則,則B正確;對C,,則C正確;對D,設平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯誤.故選:D.11、A【解析】求出,分析可得,可得出關于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯立,可得,則,易知點、關于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.12、D【解析】利用給定的通項公式直接計算即得.【詳解】因數列的通項公式為,則有,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據已知條件求出即可.14、【解析】利用導數求出切線的斜率即得解.【詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:15、【解析】根據題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標準方程為,所以圓心,半徑為由圓心在直線上,可設因為與軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標準方程為故答案為:【點睛】判斷兩圓的位置關系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關系,一般不采用代數法.兩圓相切注意討論內切外切兩種情況.16、【解析】求出線段的垂直平分線方程,與歐拉線方程聯立,求出的外接圓圓心坐標,并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數,所以應該有三個獨立等式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)圓心的坐標為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標準方程,可得圓心坐標與半徑;(2)由兩點間的距離公式求得,得到與,則的取值范圍可求【小問1詳解】解:由,得,圓心的坐標為,半徑;【小問2詳解】解:,,,,的取值范圍是18、(1)證明見解析(2)【解析】(1)連接EC,設EB與AC相交于點O,結合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進而可證得結論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,利用空間向量求解即可【小問1詳解】證明:連接EC,設EB與AC相交于點O,如圖,因為BC//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O為EB的中點,又因為G為PB的中點,所以OG為△PBE的中位線,即OG∥PE,因為OG平面PEF,PE?平面PEF,所以OG//平面PEF,因為E,F分別為線段AD,DC的中點,所以EF//AC,因為AC平面PEF,EF?平面PEF,所以AC//平面PEF,因為OG?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因為PF?平面PEF,所以PF//平面GAC.【小問2詳解】因為PA⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因為AB⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.19、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O坐標原點,分別以OB,AO,OP為x,y,z軸建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O為坐標原點,分別以OB,AO,OP為x,y,z軸建立空間直角坐標系,可得:,,,,,所以,,,設平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為20、(1)(2)線段上存在一點,當時,平面.【解析】(1)設點到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點作交于點,連接,可證明平面平面,從而可得出答案.【小問1詳解】由,,為中點,則由平面,平面,則又,且,則平面又,則平面,且都在平面內所以所以,取的中點,連接,則,所以,所以所以所以則設點到平面的距離為,則由即,即【小問2詳解】線段上是否存在一點,使平面.由(1)連接,則四邊形為平行四邊形,則過點作交于,則為中點,則為的中點,即又平面,則平面過點作交于點,連接,則,即又平面,所以平面又,所以平面平面又平面,所以平面所以線段上存在一點,當時,平面.21、(1);(2)是定值,.【解析】(1)根據給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設出直線的方程,再與軌跡的方程聯立,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點,則,而,于是得,因此,點的軌跡是以C,A為左右焦點,長軸長為4的橢圓,短半軸長有,所以軌跡的方程為.【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論