




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆四川省綿陽巿三臺中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.2.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.3.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.4.若直線a不平行于平面,則下列結(jié)論正確的是()A.內(nèi)的所有直線均與直線a異面 B.直線a與平面有公共點C.內(nèi)不存在與a平行的直線 D.內(nèi)的直線均與a相交5.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.已知集合,,則()A. B.C. D.7.函數(shù)的極大值點為()A. B.C. D.不存在8.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.9.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.310.和的等差中項與等比中項分別為()A., B.2,C., D.1,11.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上12.已知橢圓的左焦點是,右焦點是,點P在橢圓上,如果線段的中點在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:3二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的前項和為,則的值為_____14.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________15.已知在△中,角A,B,C的對邊分別是a,b,c,若△的面積為2,邊上中線的長為.且,則△外接圓的面積為___________16.設(shè)數(shù)列滿足,則an=________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.18.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長19.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個零點,,證明:20.(12分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與x軸交于點P.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于A,B兩點,求的值21.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍22.(10分)已知函數(shù)R)(1)當時,求函數(shù)的圖象在處的切線方程;(2)求的單調(diào)區(qū)間
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D2、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關(guān)于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關(guān)鍵點點睛:本題考查利用圓周角求參數(shù),解題的關(guān)鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數(shù).3、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得4、B【解析】根據(jù)題意可得直線a與平面相交或在平面內(nèi),結(jié)合線面的位置關(guān)系依次判斷選項即可.【詳解】若直線a不平行與平面,則直線a與平面相交或在平面內(nèi).A:內(nèi)的所有直線均與直線a異面錯誤,也可能相交,故A錯誤;B:直線a與平面相交或直線a在平面內(nèi)都有公共點,故B正確;C:平面內(nèi)不存在與a平行的直線,錯誤,當直線a在平面內(nèi)就存在與a平行的直線,故C錯誤;D:平面內(nèi)的直線均與a相交,錯誤,也可能異面,故D錯誤.故選:B5、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B6、A【解析】由已知得,因為,所以,故選A7、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號可得,或者根據(jù)對勾函數(shù)圖象可解.【詳解】令,得,因為時,,時,,所以時有極大值;當時,,時,,所以時有極小值.故選:B8、D【解析】設(shè)等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設(shè)等比數(shù)列的公比為,因為,,所以,所以,解得,故選:D9、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A10、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.11、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C12、A【解析】求出橢圓的焦點坐標,再根據(jù)點在橢圓上,線段的中點在軸上,求得點坐標,進而計算,從而求解.【詳解】由橢圓方程可得:,設(shè)點坐標為,線段的中點為,因為線段中點在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列前項和公式的特點列方程,解方程求得的值.【詳解】由于等比數(shù)列前項和,本題中,故.故填:.【點睛】本小題主要考查等比數(shù)列前項和公式的特點,考查觀察與思考的能力,屬于基礎(chǔ)題.14、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據(jù)可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.15、或【解析】由已知,結(jié)合正弦定理邊角關(guān)系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長b、c,應(yīng)用余弦定理求邊長a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設(shè)及正弦定理邊角關(guān)系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或16、【解析】先由題意得時,,再作差得,驗證時也滿足【詳解】①當時,;當時,②①②得,當也成立.即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)由,計算出公差,再寫出通項公式即可.(2)直接用公式寫出,配方后求出最小值.【小問1詳解】設(shè)公差為,由得,從而,即又,【小問2詳解】由(1)的結(jié)論,,,當時,取得最小值.18、(1)(2)【解析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴19、(1)函數(shù)的單調(diào)性見解析;(2)證明見解析.【解析】(1)求出函數(shù)的導(dǎo)數(shù),按a值分類討論判斷的正負作答.(2)將分別代入計算化簡變形,再對所證不等式作等價變形,構(gòu)造函數(shù),借助函數(shù)導(dǎo)數(shù)推理作答.【小問1詳解】已知函數(shù)的定義域為,,當時,恒成立,所以在區(qū)間上單調(diào)遞增;當時,由,解得,由,解得,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,所以,當時,在上單調(diào)遞增,當時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,不妨設(shè),則,,于是得,即,亦有,即,因此,,要證明,即證,即證,即證,即證,令,,,則有在上單調(diào)遞增,,,即成立,所以.【點睛】思路點睛:涉及雙變量的不等式證明問題,將所證不等式等價轉(zhuǎn)化,構(gòu)造新函數(shù),再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性、極(最)值問題處理.20、(1)直線l的普通方程,曲線C的直角坐標方程(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,在參數(shù)方程、極坐標方程和直角坐標方程之間進行轉(zhuǎn)換;(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【小問1詳解】解:直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標方程,曲線的極坐標方程為,根據(jù),轉(zhuǎn)換為直角坐標方程為;小問2詳解】直線轉(zhuǎn)換為參數(shù)方程為為參數(shù)),代入,得到,所以,,所以21、(1)焦點坐標為,,頂點坐標為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點坐標、頂點坐標和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當時,雙曲線方程化為,所以,,,所以焦點坐標為,,頂點坐標為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云計算服務(wù)模式變革下的市場細分領(lǐng)域競爭格局研究報告
- 校園安全管理報告2025:智慧校園安全教育與培訓(xùn)課程開發(fā)與應(yīng)用
- 2025年醫(yī)院電子病歷系統(tǒng)與移動醫(yī)療設(shè)備集成優(yōu)化報告
- 江蘇省鎮(zhèn)江市名校2025屆英語七下期中統(tǒng)考試題含答案
- 2025年醫(yī)藥企業(yè)研發(fā)外包(CRO)市場潛力與未來發(fā)展趨勢報告001
- 2025年醫(yī)藥企業(yè)研發(fā)外包(CRO)模式生物材料研發(fā)與產(chǎn)業(yè)化報告
- 2025年農(nóng)村一二三產(chǎn)業(yè)融合發(fā)展的農(nóng)產(chǎn)品質(zhì)量安全監(jiān)管報告
- 周期表課件教學(xué)課件
- 2025年公眾參與環(huán)境影響評價的公眾參與機制與公眾參與能力培養(yǎng)研究報告
- 2025年高校產(chǎn)學(xué)研合作技術(shù)轉(zhuǎn)移創(chuàng)新生態(tài)構(gòu)建研究
- 2024年 紹興市交通控股集團公司招聘考試筆試真題試題含答案
- 超限模板及高支模安全專項施工方案(論證后)
- 日間化療服務(wù)管理制度
- 暑假散學(xué)典禮課件小學(xué)生
- 2024年涼山州木里縣選聘社區(qū)工作者真題
- 2025年新高考1卷(新課標Ⅰ卷)英語試卷
- 部編版七年級語文下冊第4單元試題及答案
- 東莞職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試題庫
- GB 18613-2020電動機能效限定值及能效等級
- (高清正版)JJF(浙)1080—2012明渠流量計在線校準規(guī)范(電子版)
- 外科常見診療技術(shù)操作規(guī)范
評論
0/150
提交評論