安徽合肥六中2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
安徽合肥六中2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
安徽合肥六中2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
安徽合肥六中2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
安徽合肥六中2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽合肥六中2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線經過兩個定點,,則直線傾斜角大小是()A. B.C. D.2.甲、乙兩名同學8次考試的成績統(tǒng)計如圖所示,記甲、乙兩人成績的平均數(shù)分別為,,標準差分別為,,則()A.>,< B.>,>C.<,< D.<,>3.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.224.在等差數(shù)列中,其前項和為.若,是方程的兩個根,那么的值為()A.44 B.C.66 D.5.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.6.經過點且與直線垂直的直線方程為()A. B.C. D.7.設等差數(shù)列的前n項和為.若,則()A.19 B.21C.23 D.388.設函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.9.已知方程表示雙曲線,則實數(shù)的取值范圍是()A.或 B.C. D.10.設雙曲線()的焦距為12,則()A.1 B.2C.3 D.411.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.212.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,二、填空題:本題共4小題,每小題5分,共20分。13.圓心在x軸上且過點的一個圓的標準方程可以是______14.已知直線與平行,則實數(shù)的值為_____________.15.定義離心率是的橢圓為“黃金橢圓”.已知橢圓是“黃金橢圓”,則_________.若“黃金橢圓”兩個焦點分別為、,P為橢圓C上的異于頂點的任意一點,點M是的內心,連接并延長交于點N,則________.16.已知橢圓的左、右焦點分別為,若橢圓上的點P滿足軸,,則該橢圓的離心率為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.18.(12分)請你設計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個長方體形狀的包裝盒,、在上是被切去的等腰直角三角形斜邊的兩個端點,設(1)求包裝盒的容積關于的函數(shù)表達式,并求出函數(shù)的定義域;(2)當為多少時,包裝盒的容積最大?最大容積是多少?19.(12分)已知三角形的三個頂點是,,(1)求邊上的中線所在直線的方程;(2)求邊上的高所在直線的方程20.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標準方程;(2)過的直線交曲線于兩點,求的取值范圍.21.(12分)在平面直角坐標系xOy中,橢圓C:的左,右頂點分別為A、B,點F是橢圓的右焦點,,(1)求橢圓C的方程;(2)不過點A的直線l交橢圓C于M、N兩點,記直線l、AM、AN的斜率分別為k、、.若,證明直線l過定點,并求出定點的坐標22.(10分)已知橢圓的長軸長是,以其短軸為直徑的圓過橢圓的左右焦點,.(1)求橢圓E的方程;(2)過橢圓E左焦點作不與坐標軸垂直的直線,交橢圓于M,N兩點,線段MN的垂直平分線與y軸負半軸交于點Q,若點Q的縱坐標的最大值是,求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A2、A【解析】根據(jù)折線統(tǒng)計圖,結合均值、方差的實際含義判斷、及、的大小.【詳解】由統(tǒng)計圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.3、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.4、D【解析】由,是方程的兩個根,利用韋達定理可知與的和,根據(jù)等差數(shù)列的性質可得與的和等于,即可求出的值,然后再利用等差數(shù)列的性質可知等于的11倍,把的值代入即可求出的值.【詳解】因為,是方程的兩個根,所以,而,所以,則,故選:.5、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上6、A【解析】根據(jù)點斜式求得正確答案.【詳解】直線的斜率為,經過點且與直線垂直的直線方程為,即.故選:A7、A【解析】由已知及等差數(shù)列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A8、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調性與最值,畫出函數(shù)圖象,數(shù)形結合可得結果.【詳解】解:設,則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質、利用導數(shù)研究函數(shù)的單調性、函數(shù)的零點,以及數(shù)形結合思想的應用,屬于難題.數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質,為研究函數(shù)的數(shù)量關系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質9、A【解析】根據(jù)雙曲線標準方程的性質,列出關于不等式,求解即可得到答案【詳解】由雙曲線的性質:,解的或,故選:A10、B【解析】根據(jù)可得關于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎題.11、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A12、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設到的距離為,則,當?shù)拿娣e最小時,,故正確故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】確定x軸上一個點做圓心,求出半徑,再寫出圓的標準方程即可.【詳解】以x軸上的點為圓心,則半徑,所以圓的標準方程為:.故答案為:14、或【解析】根據(jù)平行線的性質進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或15、①.②.【解析】第一空,直接套入“黃金橢圓”新定義即可,第二空,從內切圓入手,找到等量關系,進而得到,求解即可【詳解】由題,,所以如圖,連接,設內切圓半徑為,則,即,∴,∴,∴∴,∴故答案為:;【點睛】本題從新定義出發(fā),第一空直接套用定義可得答案,第二空升華,需要在理解新定義的基礎上,借助內切圓的相關公式求解,層層遞進,是一道好題.關鍵點在于找到“”這一關系16、【解析】由題意分析為直角三角形,得到關于a、c的齊次式,即可求出離心率.【詳解】設,則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為18、(1),定義域為;(2)當時,包裝盒的容積最大是.【解析】(1)設出包裝盒的高和底面邊長,利用長方體的表面積得到等量關系,再利用長方體的體積公式求出表達式,再利用實際意義得到函數(shù)的定義域;(2)求導,利用導函數(shù)的符號變化得到函數(shù)的極值,即最值.小問1詳解】解:設包裝盒的高為,底面邊長為,則,,所以=其定義域為;【小問2詳解】解:由(1)得:,,因為,所以當時,;當時,;所以當時,取得極大值,即當時,包裝盒的容積最大是19、(1);(2)【解析】(1)先求出BC的中點坐標,再利用兩點式求出直線的方程;(2)先求出BC邊上的高所在直線的斜率,再利用點斜式求出直線的方程.【詳解】(1)設線段的中點為因為,,所以的中點,所以邊上的中線所在直線的方程為,即(2)因為,,所以邊所在直線的斜率,所以邊上的高所在直線的斜率為,所以邊上的高所在直線的方程為,即【點睛】本題主要考查直線方程的求法,屬于基礎題.20、(1);(2).【解析】(1)根據(jù)題意,結合離心率易,知雙曲線為等軸雙曲線,進而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結合設而不求法以及向量數(shù)量積的坐標公式,即可求解.【小問1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標準方程為.【小問2詳解】當直線斜率存在時,設直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點,,解得.設,則有,,因此,∵,∴且,故或,故;②當直線的斜率不存在時,此時,易知,,故.綜上所述,所求的取值范圍是.21、(1);(2)證明見解析,(-5,0).【解析】(1)寫出A、B、F的坐標,求出向量坐標,根據(jù)向量的關系即可列出方程組,求得a、b、c和橢圓的標準方程;(2)設直線l的方程為y=kx+m,,.聯(lián)立直線l與橢圓方程,根據(jù)韋達定理得到根與系數(shù)的關系,求出,根據(jù)即可求得k和m的關系,即可證明直線過定點并求出該定點.【小問1詳解】由題意,知A(-a,0),B(a,0),F(xiàn)(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問2詳解】設直線l的方程為y=kx+m,,∵直線l不過點A,因此-2k+m≠0由得時,,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過定點(-5,0).22、(1);(2).【解析】(1)根據(jù)給定條件結合列式計算即可作答.(2)設出直線MN的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論