版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
甘肅省慶陽市慶城縣隴東中學2023年數(shù)學高二上期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,分別為的中點,為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.2.在中,角、、所對的邊分別是、、.已知,,且滿足,則的取值范圍為()A. B.C. D.3.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切4.已知等差數(shù)列的公差,記該數(shù)列的前項和為,則的最大值為()A.66 B.72C.132 D.1985.已知橢圓:的左、右焦點分別為、,為坐標原點,為橢圓上一點.與軸交于一點,,則橢圓C的離心率為()A. B.C. D.6.已知拋物線的焦點為F,過點F分別作兩條直線,直線與拋物線C交于A、B兩點,直線與拋物線C交于D、E兩點,若與的斜率的平方和為2,則的最小值為()A.24 B.20C.16 D.127.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.8.復數(shù)的共軛復數(shù)的虛部為()A. B.C. D.9.為發(fā)揮我市“示范性高中”的輻射帶動作用,促進教育的均衡發(fā)展,共享優(yōu)質(zhì)教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學校支教,開展送教下鄉(xiāng)活動,每所學校至少分派一人,其中教師甲不能到學校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.10010.在四棱錐中,分別為的中點,則()A. B.C. D.11.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.12.若,都為正實數(shù),,則的最大值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點分別為,過點的直線交雙曲線右支于A,B兩點,若是等腰三角形,且,則的面積為___________.14.我國古代,9是數(shù)字之極,代表尊貴之意,所以中國古代皇家建筑中包含許多與9相關的設計.例如,北京天壇圓丘的底面由扇環(huán)形的石板鋪成(如圖),最高一層是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊,共有9圈,則前9圈的石板總數(shù)是__________15.過點,且垂直于的直線方程為_______________.16.點到拋物線上的點的距離的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知p:方程所表示的曲線為焦點在x軸上的橢圓;q:當時,函數(shù)恒成立.(1)若p為真,求實數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實數(shù)t的取值范圍18.(12分)已知函數(shù).(1)求的導數(shù);(2)求函數(shù)的圖象在點處的切線方程.19.(12分)已知拋物線上的點M到焦點F的距離為5,點M到x軸的距離為(1)求拋物線C的方程;(2)若拋物線C的準線l與x軸交于點Q,過點Q作直線交拋物線C于A,B兩點,設直線FA,F(xiàn)B的斜率分別為,.求的值20.(12分)在一次重大軍事聯(lián)合演習中,以點為中心的海里以內(nèi)海域被設為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點正北方向海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東,且與點相距海里的位置,經(jīng)過小時又測得該船已行駛到位于點北偏東,且與點相距海里的位置(1)求該船的行駛速度(單位:海里/小時);(2)該船能否不改變方向繼續(xù)直線航行?請說明理由21.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,且.(1)求角C的大?。唬?)若,求△ABC面積的最大值.22.(10分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】建立空間直角坐標系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標原點,DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標系,設正方體棱長為2,則,,,,則,,設異面直線與所成角為(),則.故選:A2、D【解析】利用正弦定理邊角互化思想化簡得出,利用余弦定理化簡得出,結合,根據(jù)函數(shù)在上的單調(diào)性可求得的取值范圍.【詳解】且,所以,由正弦定理得,即,,,所以,,則,由余弦定理得,,則,由于雙勾函數(shù)在上單調(diào)遞增,則,即,所以,.因此,的取值范圍為.故選:D.【點睛】本題考查三角形內(nèi)角余弦值的取值范圍的求解,考查了余弦定理以及正弦定理邊角互化思想的應用,考查計算能力,屬于中等題.3、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應假設只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內(nèi),故正確;故選:D.4、A【解析】根據(jù)等差數(shù)列的公差,求得其通項公式求解.【詳解】因為等差數(shù)列的公差,所以,則,所以,由,得,所以或12時,該數(shù)列的前項和取得最大值,最大值為,故選:A5、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C6、C【解析】設兩條直線方程,與拋物線聯(lián)立,求出弦長的表達式,根據(jù)基本不等式求出最小值【詳解】拋物線的焦點坐標為,設直線:,直線:,聯(lián)立得:,所以,所以焦點弦,同理得:,所以,因為,所以,故選:C7、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C8、B【解析】先根據(jù)復數(shù)除法與加法運算求解得,再求共軛復數(shù)及其虛部.【詳解】解:,所以其共軛復數(shù)為,其虛部為故選:B9、D【解析】對甲所在組的人數(shù)分類討論即得解.【詳解】當甲一個人去一個學校時,有種;當甲所在的學校有兩個老師時,有種;當甲所在的學校有三個老師時,有種;所以共有28+48+24=100種.故選:D【點睛】方法點睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.10、A【解析】結合空間幾何體以及空間向量的線性運算即可求出結果.【詳解】因為分別為的中點,則,,,故選:A.11、B【解析】根據(jù)得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B12、B【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可知,,再結合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:14、405【解析】前9圈的石板數(shù)依次組成一個首項為9,公差為9的等差數(shù)列,15、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.16、【解析】設出拋物線上點的坐標,利用兩點間距離公式,配方求出最小值.【詳解】設拋物線上的點坐標,則,當時,取得最小值,且最小值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由給定條件結合橢圓標準方程的特征列不等式求解作答.(2)求命題q真時的t值范圍,再借助“或”聯(lián)結的命題為真命題求解作答.【小問1詳解】因方程所表示的曲線為焦點在x軸上的橢圓,則有,解得,所以實數(shù)t的取值范圍是.【小問2詳解】,則有,當且僅當,即時取“=”,即,因當時,函數(shù)恒成立,則,解得,命題q為真命題有,因為假命題,且為真命題,則與一真一假,當p真q假時,,當p假q真時,,所以實數(shù)t的取值范圍是.18、(1);(2).【解析】(1)利用基本初等函數(shù)的導數(shù)公式及求導法則直接計算作答.(2)求出,再利用導數(shù)的幾何意義求出切線方程作答.【小問1詳解】函數(shù)定義域為,所以函數(shù).【小問2詳解】由(1)知,,而,于是得,即,所以函數(shù)的圖象在點處的切線方程是.19、(1)(2)0【解析】(1)由焦半徑公式求C的方程;(2)設直線AB方程,與拋物線方程聯(lián)立,由韋達定理表示出,,代入中化簡求值即可.小問1詳解】設點,則,所以,解得因為,所以.所以拋物線C的方程為【小問2詳解】由題知,,,直線AB的斜率必存在,且不為零設,,直線AB的斜率為k,則直線AB的方程為,由,得所以,,且,即所以所以的值為020、(1)海里/小時;(2)該船要改變航行方向,理由見解析.【解析】(1)設一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立平面直角坐標系,計算出,即可求得該船的行駛速度;(2)求出直線的方程,計算出點到直線的距離,可得出結論.【小問1詳解】解:設一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標系,則坐標平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時.【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點到直線的距離為,所以直線會與以為圓心,以個單位長為半徑的圓相交,因此該船要改變航行方向,否則會進入警戒區(qū)域21、(1)(2)【解析】(1)對,利用正弦定理和誘導公式整理化簡得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問1詳解】對于.由正弦定理知:即.所以.所以.所以因為,,所以.所以.因為,所以.【小問2詳解】因為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度特色小鎮(zhèn)場地硬化與文化旅游開發(fā)合同3篇
- 2025年度智慧城市項目公司營銷策劃合同3篇
- 二零二五年度個人與公司間代收代付房產(chǎn)交易合同范本2篇
- 2025年度全款購置特色民宿買賣合同3篇
- 2025年度公司與員工租車及車輛租賃續(xù)租協(xié)議3篇
- 2025年度汽車租賃公司與個人汽車租賃風險管理協(xié)議3篇
- 2025年度農(nóng)業(yè)農(nóng)機智能化控制系統(tǒng)開發(fā)合同2篇
- 二零二五年度緊急物資公路運輸保障協(xié)議3篇
- 二零二五年度農(nóng)村機井承包與水資源高效利用合同
- 2025年度個人與企業(yè)間房屋購置公對私借款協(xié)議3篇
- 消化內(nèi)科交班本PDCA
- 【語文】廣東省深圳市羅湖區(qū)翠竹小學四年級上冊期末復習試卷(含答案)
- 環(huán)衛(wèi)清掃保潔、垃圾清運及綠化服務投標方案(技術標 )
- 13-4管道(設備)沖洗消毒試驗記錄
- 農(nóng)田臨水臨電施工方案范本
- 千字文毛筆楷書描紅字帖-米字格A4版
- 重金屬礦山生態(tài)治理與環(huán)境修復技術進展
- HR主題分享9-繪制學習地圖
- 成長需要挫折演講稿(20篇)
- 職工學歷教育補貼申請書
- GB/T 42915-2023銅精礦及主要含銅物料鑒別規(guī)范
評論
0/150
提交評論