




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省肇慶中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角坐標(biāo)系中,直線的傾斜角是A.30° B.60°C.120° D.150°2.某中學(xué)舉行黨史學(xué)習(xí)教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機(jī)抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.3.圓關(guān)于直線l:對稱的圓的方程為()A. B.C. D.4.已知函數(shù),要使函數(shù)有三個零點,則的取值范圍是()A. B.C. D.5.命題“”的一個充要條件是()A. B.C. D.6.下列導(dǎo)數(shù)運(yùn)算正確的是()A. B.C. D.7.設(shè)F為雙曲線C:(a>0,b>0)的右焦點,O為坐標(biāo)原點,以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.8.等比數(shù)列的公比,中有連續(xù)四項在集合中,則等于()A. B.C D.9.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.10.已知,是橢圓C的兩個焦點,P是C上的一點,若以為直徑的圓過點P,且,則C的離心率為()A. B.C. D.11.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.12.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰直角△ABC中,,點P是邊AB上異于A、B的一點,光線從點P出發(fā),經(jīng)BC、CA反射后又回到原點P.若光線QR經(jīng)過△ABC的內(nèi)心,則___________.14.設(shè)等差數(shù)列的前項和為,若,,則______15.若雙曲線的漸近線與圓相切,則該雙曲線的實軸長為______16.若展開式的二項式系數(shù)之和是64,則展開式中的常數(shù)項的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和(1)證明是等比數(shù)列,并求的通項公式;(2)在和之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求數(shù)列的前n項和18.(12分)已知等差數(shù)列滿足,,的前項和為.(1)求及;(2)令,求數(shù)列的前項和.19.(12分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設(shè),求數(shù)列的前項和20.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時,不等式對任意的恒成立,求正實數(shù)的最小值.21.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求22.(10分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)的零點個數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設(shè)直線的傾斜角為,則,因,故,故選D.【點睛】直線的斜率與傾斜角的關(guān)系是:,當(dāng)時,直線的斜率不存在,注意傾斜角的范圍.2、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對立事件進(jìn)行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.3、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對稱的點的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對稱的點的坐標(biāo)為,則,解得,即圓關(guān)于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A4、A【解析】要使函數(shù)有三個解,則與圖象有三個交點,數(shù)形結(jié)合即可求解.【詳解】要使函數(shù)有三個解,則與圖象有三個交點,因為當(dāng)時,,所以,可得在上遞減,在遞增,所以,有最小值,且時,,當(dāng)趨向于負(fù)無窮時,趨向于0,但始終小于0,當(dāng)時,單調(diào)遞減,由圖像可知:所以要使函數(shù)有三個零點,則.故選:A5、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當(dāng)時,滿足,推不出,故不充分;B.當(dāng)時,滿足,推不出,故不充分;C.當(dāng)時,推不出,故不必要;D.因為,故充要,故選:D6、B【解析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【詳解】選項A,,錯誤;選項B,,正確;選項C,,錯誤;選項D,,錯誤故選:B7、A【解析】準(zhǔn)確畫圖,由圖形對稱性得出P點坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點在圓上,,即,故選A【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強(qiáng)化練習(xí),才能在解決此類問題時事半功倍,信手拈來8、C【解析】經(jīng)分析可得,等比數(shù)列各項的絕對值單調(diào)遞增,將五個數(shù)按絕對值的大小排列,計算相鄰兩項的比值,根據(jù)等比數(shù)列的定義即可求解.【詳解】因為等比數(shù)列中有連續(xù)四項在集合中,所以中既有正數(shù)項也有負(fù)數(shù)項,所以公比,因為,所以,且負(fù)數(shù)項為相隔兩項,所以等比數(shù)列各項的絕對值單調(diào)遞增,按絕對值排列可得,因,,,,所以是中連續(xù)四項,所以,故選:C.9、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設(shè)橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:10、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知則離心率,故選:B.【點睛】本題考查橢圓離心率的計算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點三角形中根據(jù)邊角關(guān)系求解.11、C【解析】拋物線焦點為,準(zhǔn)線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關(guān)系12、C【解析】直接運(yùn)用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以為坐標(biāo)原點建立空間直角坐標(biāo)系,設(shè)出點的坐標(biāo),求得△的內(nèi)心坐標(biāo),根據(jù)△內(nèi)心以及關(guān)于的對稱點三點共線,即可求得點的坐標(biāo),則問題得解.【詳解】根據(jù)題意,以為坐標(biāo)原點,建立平面直角坐標(biāo)系,設(shè)點關(guān)于直線的對稱點為,關(guān)于軸的對稱點為,如下所示:則,不妨設(shè),則直線的方程為,設(shè)點坐標(biāo)為,則,且,整理得,解得,即點,又;設(shè)△的內(nèi)切圓圓心為,則由等面積法可得,解得;故其內(nèi)心坐標(biāo)為,由及△的內(nèi)心三點共線,即,整理得,解得(舍)或,故.故答案為:.14、77【解析】依題意利用等差中項求得,進(jìn)而求得.【詳解】依題意可得,則,故故答案為:77.15、【解析】由雙曲線方程寫出漸近線,根據(jù)相切關(guān)系,結(jié)合點線距離公式求參數(shù)a,即可確定實軸長.【詳解】由題設(shè),漸近線方程為,且圓心為,半徑為1,所以,由相切關(guān)系知:,可得,又,即,所以雙曲線的實軸長為.故答案為:16、【解析】首先利用展開式的二項式系數(shù)和是求出,然后即可求出二項式的常數(shù)項.【詳解】由題知展開式的二項式系數(shù)之和是,故有,可得,知當(dāng)時有.故展開式中的常數(shù)項為.故答案為:.【點睛】本題考查了利用二項式的系數(shù)和求參數(shù),求二項式的常數(shù)項,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項公式;(2)先求出通項,再利用錯位相減法求和即可.【小問1詳解】因,當(dāng)時,,所以,當(dāng)時,,又,解得,所以是以2為首項,2為公比的等比數(shù)列,故【小問2詳解】因為,所以,,,,所以,所以18、(1),;(2).【解析】(1)根據(jù)等差數(shù)列的通項公式及已知條件,,解方程組可得,,進(jìn)而可得等差數(shù)列的通項公式,再利用等差數(shù)列的前項和公式可得;(2)將數(shù)列的通項公式代入可得的通項公式,利用錯位相減法求和可得結(jié)果.【詳解】(1)設(shè)等差數(shù)列的首項為,公差為,由于,,所以,,解得,,所以,;(2)因為,所以,故,,兩式相減得,所以.【點睛】本題的核心是考查錯位相減求和.一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,然后作差求解.19、(1)(2)【解析】(1)利用,再結(jié)合等比數(shù)列的概念,即可求出結(jié)果;(2)由(1)可知數(shù)列是以為首項,公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:當(dāng)時,,解得;當(dāng)且時,所以所以是以為首項,為公比的等比數(shù)列所以;【小問2詳解】解:由(1)可知,所以,又,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以數(shù)列的前項和.20、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程;(2)將已知方程結(jié)合其兩根,進(jìn)行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點為,則切線方程為:.【小問2詳解】由題意有:,則,因為分別是方程的兩個根,即.兩式相減,則,則不等式,可變?yōu)椋瑑蛇呁瑫r除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當(dāng),即時,在上恒成立,則在上單調(diào)遞增,又,則在上恒成立;②當(dāng),即時,當(dāng)時,,則在上單調(diào)遞減,則,不符合題意.綜上:,所以的最小值為1.21、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時,線段中點坐標(biāo),中垂線方程:,;當(dāng)時,線段中點坐標(biāo),中垂線方程:,,綜上所述:.22、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時,無零點;當(dāng)時,有1個零點;當(dāng)時,有2個零點.【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點即可.【小問1詳解】當(dāng)時,,易知定義域為R,,當(dāng)時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大型沖關(guān)活動方案
- 地產(chǎn)健康活動方案
- 大型釣魚活動方案
- 外賣公司營銷策劃方案
- 大酒店充值活動方案
- 外場活動活動策劃方案
- 夏季養(yǎng)生講座活動方案
- 大人聚餐活動方案
- 大學(xué)生控糖減糖活動方案
- 2025-2030氫能源產(chǎn)業(yè)發(fā)展現(xiàn)狀及未來市場空間預(yù)測
- 智能機(jī)器人介紹課件
- 胎心監(jiān)護(hù)醫(yī)學(xué)宣教
- 2024屆四川省成都市溫江區(qū)八年級語文第二學(xué)期期末達(dá)標(biāo)測試試題含解析
- 電商平臺的運(yùn)營和增長策略
- 家庭安全隱患排查和應(yīng)對策略及方案
- 《塞翁失馬》課件
- 慣性導(dǎo)航與組合導(dǎo)航
- 急性腎盂腎炎疾病查房
- 第九屆全國大學(xué)生化學(xué)實驗邀請賽無機(jī)分析題
- 單位就業(yè)人員登記表
- 《應(yīng)用寫作》(第三版)復(fù)習(xí)思考、案例訓(xùn)練參考答案
評論
0/150
提交評論