版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北邢臺一中2024屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.2.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.3.已知圓C的方程為,點P在圓C上,O是坐標原點,則的最小值為()A.3 B.C. D.4.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.5.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.6.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.87.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.8.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.59.如圖是拋物線形拱橋,當水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.10.已知函數(shù)只有一個零點,則實數(shù)的取值范圍是()A B.C. D.11.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或12.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)過點K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點,為拋物線的焦點,若|BF|=2|AF|,則cos∠AFB=_______14.瑞士數(shù)學(xué)家歐拉(Euler)1765年在所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,,則歐拉線的方程為______15.不等式的解集是_______________16.已知數(shù)列的前n項和為,且滿足通項公式,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左,右焦點分別為,其離心率為,且點在C上.(1)求C的方程;(2)O為坐標原點,P為C上任意一點.若M為的中點,過M且平行于的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得?若存在,求值;若不存在,說明理由.18.(12分)2017年國家提出鄉(xiāng)村振興戰(zhàn)略目標:2020年取得重要進展,制度框架和政策體系基本形成;2035年取得決定性進展,農(nóng)業(yè)農(nóng)村現(xiàn)代化基本實現(xiàn);2050年鄉(xiāng)村全面振興,農(nóng)業(yè)強、農(nóng)村美、農(nóng)民富全面實現(xiàn).某地為實現(xiàn)鄉(xiāng)村振興,對某農(nóng)產(chǎn)品加工企業(yè)調(diào)研得到該企業(yè)2012年到2020年盈利情況:年份201220132014201520162017201820192020年份代碼x123456789盈利y(百萬)6.06.16.26.06.46.96.87.17.0(1)根據(jù)表中數(shù)據(jù)判斷年盈利y與年份代碼x是否具有線性相關(guān)性;(2)若年盈利y與年份代碼x具有線性相關(guān)性,求出線性回歸方程并根據(jù)所求方程預(yù)測該企業(yè)2021年年盈利(結(jié)果保留兩位小數(shù))參考數(shù)據(jù)及公式:,,,,,統(tǒng)計中用相關(guān)系數(shù)r來衡量變量y,x之間的線性關(guān)系的強弱,當時,變量y,x線性相關(guān)19.(12分)如圖,已知拋物線的焦點為F,拋物線C上的點到準線的最小距離為1(1)求拋物線C的方程;(2)過點F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點,l2與拋物線C交于C,D兩點,M,N分別為弦AB,CD的中點,求|MF|·|NF|的最小值20.(12分)動點與定點的距離和它到定直線的距離的比是,記動點M的軌跡為曲線C.(1)求曲線C的方程;(2)已知過點的直線與曲線C相交于兩點,,請問點P能否為線段的中點,并說明理由.21.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值22.(10分)兩個頂點、的坐標分別是、,邊、所在直線的斜率之積等于,頂點的軌跡記為.(1)求頂點的軌跡的方程;(2)若過點作直線與軌跡相交于、兩點,點恰為弦中點,求直線的方程;(3)已知點為軌跡的下頂點,若動點在軌跡上,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.2、C【解析】由等比中項的性質(zhì)及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.3、B【解析】化簡判斷圓心和半徑,利用圓的性質(zhì)判斷連接線段OC,交圓于點P時最小,再計算求值即得結(jié)果.【詳解】化簡得圓C的標準方程為,故圓心是,半徑,則連接線段OC,交圓于點P時最小,因為原點到圓心的距離,故此時.故選:B.4、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B5、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.6、D【解析】直接根據(jù)拋物線焦點弦長公式以及中點坐標公式求結(jié)果【詳解】設(shè),,則的中點到軸的距離為,則故選:D7、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.8、C【解析】直線l過定點D(1,1),當時,弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點,∵,故D在圓C內(nèi)部,直線l始終與圓相交,當時,直線l被圓截得的弦長最短,,弦長=.故選:C.9、D【解析】由題建立平面直角坐標系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.10、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個零點,等價于函數(shù)的圖像與的圖像只有一個交點,,求導(dǎo),令,得當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減;故當時,函數(shù)取得極小值;當時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實數(shù)的取值范圍是故選:B【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.11、A【解析】根據(jù)直線:與:互相平行,由求解.【詳解】因為直線:與:互相平行,所以,即,解得或,當時,直線:,:,互相平行;當時,直線:,:,重合;所以,故選:A12、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達定理計算可得點A,B的坐標,進而求出向量的坐標,進而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點坐標分別為,則則.故答案為:14、【解析】根據(jù)給定信息,利用三角形重心坐標公式求出的重心,再結(jié)合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點,,,則的重心,顯然的外心在線段AC中垂線上,設(shè),由得:,解得:,即點,直線,化簡整理得:,所以歐拉線的方程為.故答案:15、或【解析】將分式不等式,轉(zhuǎn)化為一元二次不等式求解【詳解】因為,所以,解得或.故答案為:或【點睛】本題主要考查分式不等式的解法,還考查了運算求解的能力,屬于基礎(chǔ)題.16、【解析】由時,,可得,利用累乘法得,從而即可求解.【詳解】因為,所以時,,即,化簡得,又,所以,檢驗時也成立,所以,所以,故答案:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組求解即可;(2)直線l斜率不存在時,易得λ的值;斜率存在時,設(shè)l方程為,聯(lián)立直線l與橢圓C的方程,求出;求出OP方程,聯(lián)立OP方程與橢圓C的方程,求出;代入即可求得λ.【小問1詳解】由已知可得,解得,∴橢圓C的標準方程為.【小問2詳解】若直線的斜率不存在時,,∴;當斜率存在時,設(shè)直線l的方程為.聯(lián)立直線l與橢圓方程,消去y,得,∴.∵,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在滿足條件,綜上可得,存在滿足條件.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵在于弦長公式的運用,AB斜率為k,,M(1,0),則,,,將弦長之積轉(zhuǎn)化為韋達定理求解.18、(1)年盈利y與年份代碼x具有線性相關(guān)性(2),7.25百萬元【解析】(1)根據(jù)表中的數(shù)據(jù)和提供的公式計算即可;(2)先求線性回歸方程,再代入計算即可【小問1詳解】由表中的數(shù)據(jù)得,,,,因為,所以年盈利y與年份代碼x具有線性相關(guān)性【小問2詳解】,,,當時,,該企業(yè)2021年年盈利約為7.25百萬元19、(1)(2)8【解析】(1)由拋物線C上的點到準線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進而求得的坐標,得到的表達式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因為拋物線C上的點到準線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點A(x1,y1),B(x2,y2),則,因為M(xM,yM)為弦AB的中點,所以,由,得,所以點,同理可得,所以,=,所以,當且僅當,即時,等號成立,所以的最小值為20、(1)(2)不能,理由見解析.【解析】(1)利用題中距離之比列出關(guān)于動點的方程即可求解;(2)先假設(shè)點P能為線段的中點,再利用點差法求出直線的斜率,最后聯(lián)立直線與曲線進行檢驗即可.【小問1詳解】解:動點與定點的距離和它到定直線的距離的比是則等式兩邊平方可得:化簡得曲線C的方程為:【小問2詳解】解:點不能為線段的中點,理由如下:由(1)知,曲線C的方程為:過點的直線斜率為,,因為過點的直線與曲線C相交于兩點,所以,兩式作差并化簡得:①當為的中點時,則,②將②代入①可得:此時過點的直線方程為:將直線方程與曲線C方程聯(lián)立得:,,無解與過點的直線與曲線C相交于兩點矛盾所以點不能為線段的中點【點睛】方法點睛:當圓錐曲線中涉及中點和斜率的問題時,常用點差法進行求解.21、(1)詳見解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結(jié),,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結(jié),因為,,點為的中點,所以,則兩兩垂直,以點為坐標原點,建立空間直角坐標系,如圖所示:則,,,所以,,,,,,所以,,,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,所以,因為二面角為銳二面角,所以二面角的余弦值為.22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024校服生產(chǎn)與校園文化衫銷售及售后維護服務(wù)合同2篇
- 2車輛租賃公司和個人之間的租車協(xié)議2024
- 2024物業(yè)寵物托管中心與寵物服務(wù)商合同
- 2024年網(wǎng)絡(luò)安全技術(shù)合作合同協(xié)議3篇
- 2024標準化房產(chǎn)居間業(yè)務(wù)協(xié)議一
- 2024年網(wǎng)絡(luò)游戲開發(fā)與運營合同:虛擬物品與玩家權(quán)益保護
- 鄭州師范學(xué)院《素描表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江旅游職業(yè)學(xué)院《專業(yè)外語(秘書)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中南大學(xué)《生化工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 《保護性拆除》課件
- 污水站安全培訓(xùn)
- 山東省濟寧市2023-2024學(xué)年高一上學(xué)期1月期末物理試題(解析版)
- 宜賓天原5萬噸氯化法鈦白粉環(huán)評報告
- 教育機構(gòu)年度總結(jié)和來年規(guī)劃
- 2024年工廠股權(quán)轉(zhuǎn)讓盡職調(diào)查報告3篇
- 2025年上半年河南鄭州滎陽市招聘第二批政務(wù)輔助人員211人筆試重點基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省濟南市歷城區(qū)2024-2025學(xué)年七年級上學(xué)期期末數(shù)學(xué)模擬試題(無答案)
- 醫(yī)療器械考試題及答案
- 初三家長會數(shù)學(xué)老師發(fā)言稿
- 投資計劃書模板計劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
評論
0/150
提交評論