




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東深圳平湖外國語學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.2.若數(shù)列的前項(xiàng)和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對3.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣14.若數(shù)列是等比數(shù)列,且,則()A.1 B.2C.4 D.85.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種6.已知隨機(jī)變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.327.若展開式的二項(xiàng)式系數(shù)之和為,則展開式的常數(shù)項(xiàng)為()A. B.C. D.8.已知等比數(shù)列的前n項(xiàng)和為,公比為q,若,則下列結(jié)論正確的是()A. B.C. D.9.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件10.圓的圓心到直線的距離為2,則()A. B.C. D.211.橢圓的左右焦點(diǎn)分別為,是上一點(diǎn),軸,,則橢圓的離心率等于()A. B.C. D.12.已知是橢圓右焦點(diǎn),點(diǎn)在橢圓上,線段與圓相切于點(diǎn),且,則橢圓的離心率等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)生到某工廠進(jìn)行勞動實(shí)踐,利用打印技術(shù)制作模型.如圖,該模型為一個大圓柱中挖去一個小圓柱后的剩余部分(兩個圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(取)14.在中,內(nèi)角,,的對邊分別為,,,若,且,則_______15.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.16.某中學(xué)高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數(shù)是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀18.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),,為自然對數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大小;(2)計(jì)算,,,由此推測計(jì)算的公式,并給出證明;19.(12分)已知直線l過點(diǎn),與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn)(1)若的面積為,求直線l的方程;(2)求的面積的最小值20.(12分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)21.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點(diǎn).(1)求雙曲線的方程;(2)已知雙曲線的左右焦點(diǎn)分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點(diǎn),求的面積.22.(10分)已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M()(1)求圓C的方程;(2)已知點(diǎn)P是圓C上的動點(diǎn),試求點(diǎn)P到直線的距離的最小值;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.2、D【解析】利用數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以是等差數(shù)列;當(dāng)時(shí),為非等差數(shù)列,非等比數(shù)列’當(dāng)時(shí),,所以是等比數(shù)列,故選:D3、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時(shí)取最小值故選:C4、C【解析】根據(jù)等比數(shù)列的性質(zhì),由題中條件,求出,即可得出結(jié)果.【詳解】因?yàn)閿?shù)列是等比數(shù)列,由,得,所以,因此.故選:C.5、B【解析】按涂色順序進(jìn)行分四步,根據(jù)分步乘法計(jì)數(shù)原理可得解.【詳解】按涂色順序進(jìn)行分四步:涂A部分時(shí),有4種涂法;涂B部分時(shí),有3種涂法;涂C部分時(shí),有2種涂法;涂D部分時(shí),有2種涂法.由分步乘法計(jì)數(shù)原理,得不同的涂色方法共有種.故選:B.6、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機(jī)變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C7、C【解析】利用二項(xiàng)式系數(shù)的性質(zhì)求得的值,再利用二項(xiàng)式展開式的通項(xiàng)公式,求得結(jié)果即可.【詳解】解:因?yàn)檎归_式的二項(xiàng)式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項(xiàng)為.故選:C.8、D【解析】根據(jù),可求得,然后逐一分析判斷各個選項(xiàng)即可得解.【詳解】解:因?yàn)?,所以,因?yàn)?,所以,所以,故A錯誤;又,所以,所以,所以,故BC錯誤;所以,故D正確.故選:D.9、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當(dāng)時(shí),,非充分,故A錯.當(dāng)不能推出,所以非充分,,所以是必要條件,故B正確.當(dāng)在中,,反之,故為充要條件,故C錯;當(dāng)時(shí),,,,充分條件,因?yàn)椋?dāng)時(shí)成立,非必要條件,故D錯.故選:B.10、B【解析】配方求出圓心坐標(biāo),再由點(diǎn)到直線距離公式計(jì)算【詳解】圓的標(biāo)準(zhǔn)方程是,圓心為,∴,解得故選:B.【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程,考查點(diǎn)到直線距離公式,屬于基礎(chǔ)題11、A【解析】在中結(jié)合已知條件,用焦距2c表示、,再利用橢圓定義計(jì)算作答.【詳解】令橢圓的半焦距為c,因是上一點(diǎn),軸,,在中,,,由橢圓定義知,則,所以橢圓的離心率等于.故選:A12、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點(diǎn)為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4500【解析】根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案:4500.14、【解析】代入,展開整理得,①化為,與①式相加得,轉(zhuǎn)化為關(guān)于的方程,求解即可得出結(jié)論.【詳解】因?yàn)椋?,所以,因?yàn)?,所以,則,整理得,解得.故答案為:.【點(diǎn)睛】本題考查正弦定理的邊角互化,考查三角函數(shù)化簡求值,屬于中檔題.15、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:16、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數(shù).【詳解】由題意抽樣比例:則從高三年級抽取的人數(shù)是人故答案為:25三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形18、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)詳見解析【解析】(1)求出的定義域,利用導(dǎo)數(shù)求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測:然后用數(shù)學(xué)歸納法證明即可.【小問1詳解】的定義域?yàn)?,?dāng),即時(shí),單調(diào)遞增;當(dāng),即時(shí),單調(diào)遞減故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng)時(shí),,即令,得,即【小問2詳解】;;由此推測:①下面用數(shù)學(xué)歸納法證明①(1)當(dāng)時(shí),左邊右邊,①成立(2)假設(shè)當(dāng)時(shí),①成立,即當(dāng)時(shí),,由歸納假設(shè)可得所以當(dāng)時(shí),①也成立根據(jù)(1)(2),可知①對一切正整數(shù)都成立19、(1)或(2)4【解析】(1)設(shè)直線方程為,根據(jù)所過的點(diǎn)及面積可得關(guān)于的方程組,求出解后可得直線方程,我們也可以設(shè)直線,利用面積求出后可得直線方程.(2)結(jié)合(1)中直線方程的形式利用基本不等式可求面積的最小值.【小問1詳解】法一:(1)設(shè)直線,則解得或,所以直線或法二:設(shè)直線,,則,則,∴或﹣8所以直線或【小問2詳解】法一:∵,∴,∴,此時(shí),∴面積的最小值為4,此時(shí)直線法二:∵,∴,此時(shí),∴面積的最小值為4,此時(shí)直線20、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對應(yīng)的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計(jì)算,即可容易求得結(jié)果.【小問1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問2詳解】由圖可估計(jì)眾數(shù)為2.25;設(shè)中位數(shù)為x噸,因?yàn)榍?組的頻率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4組頻率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位數(shù)為2.04噸.21、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關(guān)系,結(jié)合弦長公式、點(diǎn)線距離公式及三角形面積公式求的面積.【詳解】(1)設(shè)所求雙曲線方程為,代入點(diǎn)得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設(shè),聯(lián)立得,滿足且,,由弦長公式得,點(diǎn)到直線的距離.所以【點(diǎn)睛】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關(guān)系求原點(diǎn)與交點(diǎn)構(gòu)成三角形的面積,綜合應(yīng)用了弦長公式、點(diǎn)線距離公式、三角形面積公式,屬于基礎(chǔ)題.22、(1)(2)【解析】(1)由圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn),求得圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 興安職業(yè)技術(shù)學(xué)院《代數(shù)方法選講》2023-2024學(xué)年第二學(xué)期期末試卷
- 佳木斯大學(xué)《晉唐書法專題》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江省杭州市臨安區(qū)錦城第二初級中學(xué)2025屆初三下學(xué)期開學(xué)調(diào)研試題英語試題含答案
- 寧夏建設(shè)職業(yè)技術(shù)學(xué)院《團(tuán)體心理活動設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林省海門市重點(diǎn)名校2025屆初三畢業(yè)生第一次教學(xué)質(zhì)量監(jiān)測英語試題含答案
- 硅冶煉企業(yè)的安全生產(chǎn)與事故防范考核試卷
- 咖啡館行業(yè)知識產(chǎn)權(quán)戰(zhàn)略制定考核試卷
- 工作生活兩不誤考核試卷
- 煤氣化技術(shù)的能源供需關(guān)系研究考核試卷
- 摩托車雨衣與防雨裝備使用考核試卷
- 2025年天津市南開區(qū)中考一模語文試題(含答案)
- 婚姻保證忠誠協(xié)議書
- 新2024年-北京市房屋租賃合同自行成交版
- 有效工作時(shí)間管理
- 2025年安徽省銅陵市樅陽縣浮山中學(xué)高三下學(xué)期3月適應(yīng)性考試歷史試題含解析
- 勞動合同法員工培訓(xùn)課件
- 2025年上海市房屋租賃合同模板(標(biāo)準(zhǔn)版)
- 智慧城市中的公民參與-全面剖析
- 麻醉科急救處理職責(zé)
- 國家開放大學(xué)《課程與教學(xué)論》形考任務(wù)1-4參考答案
- 武漢土地使用稅和土地征稅等級現(xiàn)行標(biāo)準(zhǔn)
評論
0/150
提交評論