版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省陽山中學2023-2024學年高二數(shù)學第一學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若圓上至少有三個點到直線的距離為1,則半徑的取值范圍是()A. B.C. D.2.若直線與曲線有兩個公共點,則實數(shù)的取值范圍為()A. B.C. D.3.拋物線的焦點到準線的距離為()A. B.C. D.4.若數(shù)列是等差數(shù)列,其前n項和為,若,且,則等于()A. B.C. D.5.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.6.美學四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學.素描是學習繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學習幾何體結(jié)構(gòu)素描是學習素描最重要的一步.某同學在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.7.已知命題P:,,則命題P的否定為()A., B.,C., D.,8.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.310.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務,不同的分配方案有()種A.· B.·C. D.11.已知:,:,若是的充分不必要條件,則實數(shù)的取值范圍是()A. B.C. D.12.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,以點為中點的弦所在的直線的方程是___________14.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.已知數(shù)列an滿足,則__________16.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓內(nèi)有一點,過點P作直線l交圓C于A,B兩點.(1)當P為弦的中點時,求直線l的方程;(2)若直線l與直線平行,求弦的長.18.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點到直線的距離為,求實數(shù)k的取值范圍19.(12分)已知數(shù)列的前項和(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和20.(12分)如圖,四棱錐中,是邊長為4的正三角形,為正方形,平面平面,、分別為、中點.(1)證明:平面;(2)求直線EP與平面AEF所成角的正弦值.21.(12分)已知兩條直線,.設(shè)為實數(shù),分別根據(jù)下列條件求的值.(1);(2)直線在軸、軸上截距之和等于.22.(10分)已知拋物線C的頂點在坐標原點,準線方程為(1)求拋物線C的標準方程;(2)若AB是過拋物線C的焦點F的弦,以弦AB為直徑的圓與直線的位置關(guān)系是什么?先給出你的判斷結(jié)論,再給出你的證明,并作出必要的圖形
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出圓心到直線的距離為,由此可知當圓的半徑為時,圓上恰有三點到直線的距離為,當圓的半徑時,圓上恰有四個點到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標為,圓心到直線為,∵圓上至少有三個點到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.2、D【解析】由題可知,曲線表示一個半圓,結(jié)合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.3、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.4、B【解析】由等差數(shù)列的通項公式和前項和公式求出的首項和公差,即可求出.【詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.5、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C6、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.7、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B8、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.9、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A10、B【解析】先按要求分為四組,再四個不同地方,四個組進行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務,則不同的分配方案有種.故選:B11、C【解析】由是的充分不必要條件,則是的充分不必要條件,再根據(jù)對應集合的包含關(guān)系可得答案.【詳解】由,即,設(shè),由是的充分不必要條件,則是的充分不必要條件所以,則故選:C12、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),利用以為中點的弦所在的直線即為經(jīng)過點且垂直于AC的直線求得直線斜率,由點斜式可求得直線方程【詳解】圓的方程可化為,可知圓心為設(shè),則以為中點的弦所在的直線即為經(jīng)過點且垂直于的直線.又知,所以,所以直線的方程為,即故答案為:【點睛】本題考查圓的幾何性質(zhì),考查直線方程求解,是基礎(chǔ)題14、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因為,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:15、2019【解析】將已知化為代入可以左右相消化簡,將已知化為,代入可以上下相消化簡,再全部代入求解即可.【詳解】由知故所以故答案為:201916、【解析】建立如圖直角坐標系,設(shè)點,根據(jù)題意和兩點坐標求距離公式可得,結(jié)合圓的面積公式計算即可.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設(shè)點,則,由,化簡并整理得:,于是得點M軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意,,求出直線l的斜率,利用點斜式即可求解;(2)由題意,利用點斜式求出直線l的方程,然后由點到直線的距離公式求出弦心距,最后根據(jù)弦長公式即可求解.小問1詳解】解:由題意,圓心,P為弦的中點時,由圓的性質(zhì)有,又,所以,所以直線l的方程為,即;【小問2詳解】解:因為直線l與直線平行,所以,所以直線的方程為,即,因為圓心到直線的距離,又半徑,所以由弦長公式得.18、(1)或;(2).【解析】(1)設(shè)圓心為,由題意及圓的弦長公式即可列方程組,解方程組即可;(2)由題意可將問題轉(zhuǎn)化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設(shè)圓心為,半徑為r,根據(jù)題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個不同的點到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為19、(1)(2)【解析】(1)利用與的關(guān)系求數(shù)列的通項公式;(2)利用錯位相減法求和即可.【小問1詳解】因為,故當時,,兩式相減得,又由題設(shè)可得,從而的通項公式為:;【小問2詳解】因為,,兩式相減得:所以.20、(1)見解析(2)【解析】(1)連接,證明,即可證明平面;(2)取的中點,連接,由平面平面,得平面,建立如圖所示空間直角坐標系,利用向量法即可求得答案.【小問1詳解】證明:連接,是正方形,是的中點,是的中點,是的中點,,平面,平面,平面;【小問2詳解】取的中點,連接,則,因為是邊長為4的正三角形,所以,因為平面平面,且平面平面,所以平面,建立如圖所示空間直角坐標系,則,則,設(shè)平面的法向量,則有,可取,則,所以直線EP與平面AEF所成角的正弦值為.21、(1);(2).【解析】(1)由兩直線平行可得出關(guān)于的等式,求出的值,再代入兩直線方程,驗證兩直線是否平行,由此可得出結(jié)果;(2)分析可知,求出直線在軸、軸上的截距,結(jié)合已知條件可得出關(guān)于的等式,即可解得的值.【小問1詳解】解:由,則,即,解得或.當時,,,此時;當時,,,此時重合,不合乎題意.綜上所述,;【小問2詳解】解:對于直線,由已知可得,則,令,得;令,得.因為直線在軸、軸上截距之和等于,即,解得.22、(1);(2)相切,證明過程、圖形見解析.【解析】(1)根據(jù)拋物線的準線方程,結(jié)合拋物線標準方程進行求解即可;(2)設(shè)出直線AB的方程與拋物線方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合圓的性質(zhì)進行求解即可.【小問1詳解】因為拋物線C的頂點在坐標原點,準
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)老院食堂與便利店運營管理合同4篇
- 2025年度生態(tài)農(nóng)業(yè)大棚使用權(quán)轉(zhuǎn)讓合同模板4篇
- 2025年度文化產(chǎn)品代理采購合同模板4篇
- 2024版英文技術(shù)服務合同范本規(guī)范
- 2024進戶門銷售合同
- 2024訴訟代理委托合同范本
- 2025年度專業(yè)論壇會議組織合同范本4篇
- 2025年度數(shù)字音樂詞曲版權(quán)交易合作合同范本4篇
- 2025年度新能源汽車項目代理投標合同樣本4篇
- 2024施工簡易合同范本(橋梁檢測與維修)3篇
- 中國的世界遺產(chǎn)智慧樹知到期末考試答案2024年
- 2023年貴州省銅仁市中考數(shù)學真題試題含解析
- 世界衛(wèi)生組織生存質(zhì)量測量表(WHOQOL-BREF)
- 《葉圣陶先生二三事》第1第2課時示范公開課教學PPT課件【統(tǒng)編人教版七年級語文下冊】
- 某送電線路安全健康環(huán)境與文明施工監(jiān)理細則
- GB/T 28885-2012燃氣服務導則
- PEP-3心理教育量表-評估報告
- 控制性詳細規(guī)劃編制項目競爭性磋商招標文件評標辦法、采購需求和技術(shù)參數(shù)
- 《增值稅及附加稅費申報表(小規(guī)模納稅人適用)》 及其附列資料-江蘇稅務
- 中南民族大學中文成績單
- 危大工程安全管理措施方案
評論
0/150
提交評論