貴州省貴陽附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第1頁
貴州省貴陽附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第2頁
貴州省貴陽附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第3頁
貴州省貴陽附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第4頁
貴州省貴陽附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

貴州省貴陽附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e2.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對(duì)任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.有下列四個(gè)命題,其中真命題是()A., B.,,C.,, D.,4.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.335.已知數(shù)列滿足:,數(shù)列的前n項(xiàng)和為,若恒成立,則的取值范圍是()A. B.C. D.6.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.7.若關(guān)于x的方程有解,則實(shí)數(shù)的取值范圍為()A. B.C. D.8.有一組樣本數(shù)據(jù)、、、,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)、、、,其中,為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同 B.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同C.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同 D.兩組樣本數(shù)據(jù)的樣本眾數(shù)相同9.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點(diǎn)P滿足,則()A. B.1C. D.210.直線x+y﹣1=0被圓(x+1)2+y2=3截得的弦長等于()A. B.2C.2 D.411.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.12.在棱長為2的正方體中,為線段的中點(diǎn),則點(diǎn)到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若平面內(nèi)兩條直線,平行,則實(shí)數(shù)______14.已知數(shù)列的前項(xiàng)和為,且滿足,則______.15.若平面法向量,直線的方向向量為,則與所成角的大小為___________.16.已知,,,,使得成立,則實(shí)數(shù)a的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線,拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)相同,點(diǎn)為拋物線上一點(diǎn).(1)求雙曲線的焦點(diǎn)坐標(biāo);(2)若點(diǎn)到拋物線的焦點(diǎn)的距離是5,求的值.18.(12分)已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知點(diǎn)和平面內(nèi)一點(diǎn),過點(diǎn)任作直線與橢圓相交于,兩點(diǎn),設(shè)直線,,的斜率分別為,,,,試求,滿足的關(guān)系式.19.(12分)已知雙曲線的漸近線方程為,且過點(diǎn)(1)求雙曲線的方程;(2)過雙曲線的一個(gè)焦點(diǎn)作斜率為的直線交雙曲線于兩點(diǎn),求弦長20.(12分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.21.(12分)已知等差數(shù)列滿足,(1)求的通項(xiàng)公式;(2)若等比數(shù)列的前n項(xiàng)和為,且,,,求滿足的n的最大值22.(10分)已知橢圓的離心率,過橢圓C的焦點(diǎn)且垂直于x軸的直線截橢圓所得到的線段的長度為1(1)求橢圓C的方程;(2)直線交橢圓C于A、B兩點(diǎn),若y軸上存在點(diǎn)P,使得是以AB為斜邊的等腰直角三角形,求的面積的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】對(duì)函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時(shí),,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,故選:A2、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因?yàn)楹瘮?shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對(duì)任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對(duì)任意的恒成立,即由“對(duì)任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對(duì)任意的,”,因此“對(duì)任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A3、B【解析】對(duì)于選項(xiàng)A,令即可驗(yàn)證其不正確;對(duì)于選項(xiàng)C、選項(xiàng)D,令,即可驗(yàn)證其均不正確,進(jìn)而可得出結(jié)果.【詳解】對(duì)于選項(xiàng)A,令,則,故A錯(cuò);對(duì)于選項(xiàng)B,令,則,顯然成立,故B正確;對(duì)于選項(xiàng)C,令,則顯然無解,故C錯(cuò);對(duì)于選項(xiàng)D,令,則顯然不成立,故D錯(cuò).故選B【點(diǎn)睛】本題主要考查命題真假的判定,用特殊值法驗(yàn)證即可,屬于常考題型.4、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C5、D【解析】由于,所以利用裂項(xiàng)相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價(jià)于,即恒成立,化簡得到,因?yàn)?,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以故選:D6、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點(diǎn)處的切線斜率隨增大而減小,滿足要求的只有A故選:A7、C【解析】將對(duì)數(shù)方程化為指數(shù)方程,用x表示出a,利用基本不等式即可求a的范圍【詳解】,,當(dāng)且僅當(dāng)時(shí)取等號(hào),故故選:C8、B【解析】利用平均數(shù)公式可判斷A選項(xiàng);利用標(biāo)準(zhǔn)差公式可判斷B選項(xiàng);利用中位數(shù)的定義可判斷C選項(xiàng);利用眾數(shù)的定義可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),設(shè)數(shù)據(jù)、、、的平均數(shù)為,數(shù)據(jù)、、、的平均數(shù)為,則,A錯(cuò);對(duì)于B選項(xiàng),設(shè)數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,,B對(duì);對(duì)于C選項(xiàng),設(shè)數(shù)據(jù)、、、中位數(shù)為,數(shù)據(jù)、、、的中位數(shù)為,不妨設(shè),則,若為奇數(shù),則,;若為偶數(shù),則,.綜上,,C錯(cuò);對(duì)于D選項(xiàng),設(shè)數(shù)據(jù)、、、的眾數(shù)為,則數(shù)據(jù)、、、的眾數(shù)為,D錯(cuò).故選:B.9、D【解析】設(shè),構(gòu)建空間直角坐標(biāo)系,令且,求出,,再由向量垂直的坐標(biāo)表示列方程,結(jié)合點(diǎn)P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標(biāo)系,若,則,,且,所以,,又存在唯一的一點(diǎn)P滿足,所以,則,故,可得,此時(shí),所以.故選:D10、B【解析】如圖,圓(x+1)2+y2=3的圓心為M(?1,0),圓半徑|AM|=,圓心M(?1,0)到直線x+y?1=0的距離:|,∴直線x+y?1=0被圓(x+1)2+y2=3截得的弦長:.故選B.點(diǎn)睛:本題考查圓的標(biāo)準(zhǔn)方程以及直線和圓的位置關(guān)系.判斷直線與圓的位置關(guān)系一般有兩種方法:1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方程組轉(zhuǎn)化為一元二次方程,該方程解的情況即對(duì)應(yīng)直線與圓的位置關(guān)系.這種方法具有一般性,適合于判斷直線與圓錐曲線的位置關(guān)系,但是計(jì)算量較大.2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關(guān)系.這種方法的特點(diǎn)是計(jì)算量較?。?dāng)直線與圓相交時(shí),可利用垂徑定理得出圓心到直線的距離,弦長和半徑的勾股關(guān)系.11、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點(diǎn),從而求出函數(shù)的極大值;【詳解】解:因?yàn)?,所以,依題意可得,即,解得,所以定義域?yàn)?,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B12、D【解析】根據(jù)正方體的性質(zhì),在直角△中應(yīng)用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗(yàn)證都符合題意,故答案為:-1或214、【解析】根據(jù)所給的通項(xiàng)公式,代入求得,并由代入求得,即可求得的值.【詳解】數(shù)列的前n項(xiàng)和,則,而,,∴,則,故答案為:.15、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計(jì)算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.16、【解析】由題可得,求導(dǎo)可得的單調(diào)性,將的最小值代入,即得.【詳解】∵,,使得成立,∴由,得,當(dāng)時(shí),,∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為又在上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為,∴,即實(shí)數(shù)的取值范圍是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點(diǎn)坐標(biāo);(2)先求出的值,再解方程得解.【詳解】(1)因?yàn)殡p曲線的方程為,所以.所以.所以.所以雙曲線的焦點(diǎn)坐標(biāo)分別為.(2)因?yàn)閽佄锞€的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)相同,所以拋物線的焦點(diǎn)坐標(biāo)是(2,0),所以.因?yàn)辄c(diǎn)為拋物線上一點(diǎn),所以點(diǎn)到拋物線的焦點(diǎn)的距離等于點(diǎn)到拋物線的準(zhǔn)線的距離.因?yàn)辄c(diǎn)到拋物線的焦點(diǎn)的距離是5,即,所以.【點(diǎn)睛】本題主要考查雙曲線的焦點(diǎn)坐標(biāo)的求法,考查拋物線的定義和幾何性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1);(2).【解析】(1)根據(jù)直線與圓相切可得,再結(jié)合離心率及間的關(guān)系可得的值,進(jìn)而得到橢圓的方程;(2)分直線的斜率存在與不存在兩種情況考慮,分別求出點(diǎn)的坐標(biāo)后再求出的值,進(jìn)而得到,最后根據(jù)斜率公式可得所求的關(guān)系式【詳解】(1)因?yàn)閳A與直線相切,所以圓心到直線的距離,即所以,又由題意得所以,所以橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時(shí),可得直線方程為,由,解得或,不妨設(shè),,所以,又,所以,所以,整理得所以滿足的關(guān)系式為.②當(dāng)直線的斜率存在時(shí),設(shè)直線,由消去并整理得,設(shè)點(diǎn),則有,所以.所以,所以,整理得綜上可得滿足的關(guān)系式為【點(diǎn)睛】(1)判斷直線與橢圓的位置關(guān)系時(shí),一般把二者方程聯(lián)立得到方程組,判斷方程組解的個(gè)數(shù),方程組有幾個(gè)解,直線與橢圓就有幾個(gè)公共點(diǎn),方程組的解對(duì)應(yīng)公共點(diǎn)的坐標(biāo)(2)對(duì)于直線與橢圓位置關(guān)系的題目,注意設(shè)而不求和整體代入方法的運(yùn)用.解題步驟為:①設(shè)直線與橢圓的交點(diǎn)為;②聯(lián)立直線與橢圓的方程,消元得到關(guān)于x或y的一元二次方程;③利用根與系數(shù)的關(guān)系設(shè)而不求;④利用題干中的條件轉(zhuǎn)化為,或,,進(jìn)而求解.19、(1);(2).【解析】(1)根據(jù)雙曲線漸近線斜率、雙曲線過點(diǎn)可構(gòu)造方程求得,由此可得雙曲線方程;(2)由雙曲線方程可得焦點(diǎn)坐標(biāo),由此可得方程,與雙曲線方程聯(lián)立后,利用弦長公式可求得結(jié)果.【小問1詳解】由雙曲線方程知:漸近線斜率,又漸近線方程為,;雙曲線過點(diǎn),;由得:,雙曲線的方程為:;【小問2詳解】由(1)得:雙曲線的焦點(diǎn)坐標(biāo)為;若直線過雙曲線的左焦點(diǎn),則,由得:;設(shè),,則,;由雙曲線對(duì)稱性可知:當(dāng)過雙曲線右焦點(diǎn)時(shí),;綜上所述:.20、(1)證明過程見解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進(jìn)行證明即可;(2)利用空間向量夾角公式進(jìn)行求解即可.【小問1詳解】因?yàn)闉榈闹悬c(diǎn),所以,而,所以四邊形是平行四邊形,因此,因?yàn)椋?,為的中點(diǎn),所以,,而,因?yàn)?,所以,而平面,所以平面;【小?詳解】根據(jù)(1),建立如圖所示的空間直角坐標(biāo)系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.21、(1)(2)10【解析】(1)設(shè)等差數(shù)列公差為d,根據(jù)已知條件列關(guān)于和d的方程組即可求解;(2)設(shè)等比數(shù)列公比為q,根據(jù)已知條件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論