海南省天一大聯(lián)考2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁
海南省天一大聯(lián)考2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁
海南省天一大聯(lián)考2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁
海南省天一大聯(lián)考2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁
海南省天一大聯(lián)考2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

海南省天一大聯(lián)考2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.22.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點(diǎn),,則為()A. B.C. D.3.若兩定點(diǎn)A,B的距離為3,動(dòng)點(diǎn)M滿足,則M點(diǎn)的軌跡圍成區(qū)域的面積為()A. B.C. D.4.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.5.已知直線經(jīng)過拋物線的焦點(diǎn),且與該拋物線交于,兩點(diǎn),若滿足,則直線的方程為()A. B.C. D.6.命題:“?x<1,x2<1”的否定是()A.?x≥1,x2<1 B.?x≥1,x2≥1C.?x<1,x2≥1 D.?x<1,x2≥17.對(duì)任意實(shí)數(shù),在以下命題中,正確的個(gè)數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.8.等差數(shù)列中,為其前項(xiàng)和,,則的值為()A.13 B.16C.104 D.2089.離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或10.直線與直線平行,則兩直線間的距離為()A. B.C. D.11.在數(shù)列中,,,則()A.985 B.1035C.2020 D.207012.設(shè)為坐標(biāo)原點(diǎn),直線與雙曲線的兩條漸近線分別交于兩點(diǎn),若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.32二、填空題:本題共4小題,每小題5分,共20分。13.兩姐妹同時(shí)推銷某一商品,現(xiàn)抽取他們其中8天的銷售量(單位:臺(tái)),得到的莖葉圖如圖所示,已知妹妹的銷售量的平均數(shù)為14,姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,則的值為______.14.已知拋物線的焦點(diǎn)為,點(diǎn)在上,且,則______15.已知函數(shù)的圖像在點(diǎn)處的切線方程是,則=______16.?dāng)?shù)列滿足前項(xiàng)和,則數(shù)列的通項(xiàng)公式為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調(diào)遞減,求a的取值范圍18.(12分)已知為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,,為橢圓的上頂點(diǎn),以為圓心且過的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線交橢圓于兩點(diǎn).(ⅰ)若直線的斜率等于,求面積的最大值;(ⅱ)若,點(diǎn)在上,.證明:存在定點(diǎn),使得為定值.19.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個(gè)法向量.20.(12分)設(shè)橢圓:()的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.21.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G方程;(2)過橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.22.(10分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)的首項(xiàng)為,把已知的兩式相減即得解.【詳解】解:設(shè)的首項(xiàng)為,根據(jù)題意得,兩式相減得.故選:C2、B【解析】根據(jù)空間向量運(yùn)算求得正確答案.【詳解】.故選:B3、D【解析】以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,求出點(diǎn)M的軌跡方程即可計(jì)算得解.【詳解】以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,如圖,設(shè)點(diǎn),則,化簡(jiǎn)并整理得:,于是得點(diǎn)M的軌跡是以點(diǎn)為圓心,2為半徑的圓,其面積為,所以M點(diǎn)的軌跡圍成區(qū)域的面積為.故選:D4、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號(hào),得到函數(shù)的單調(diào)性以及函數(shù)的極值點(diǎn),然后判斷選項(xiàng)即可【詳解】解:由題意可知:和時(shí),,函數(shù)是增函數(shù),時(shí),,函數(shù)是減函數(shù);是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn);所以函數(shù)的圖象只能是故選:C5、C【解析】求出拋物線的焦點(diǎn),設(shè)出直線方程,代入拋物線方程,運(yùn)用韋達(dá)定理和向量坐標(biāo)表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點(diǎn),設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點(diǎn)睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.6、C【解析】將特稱命題否定為全稱命題即可【詳解】根據(jù)含有量詞的命題的否定,則“?x<1,x2<1”的否定是“?x<1,x2≥1”.故選:C.7、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因?yàn)椋瑒t,根據(jù)不等式性質(zhì)得,故正確;②當(dāng)時(shí),,而,故錯(cuò)誤;③因?yàn)?,所以,即,故正確;④當(dāng)時(shí),,故錯(cuò)誤;故選:B8、D【解析】利用等差數(shù)列下標(biāo)的性質(zhì),結(jié)合等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】由,所以,故選:D9、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評(píng):解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同10、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當(dāng)時(shí),,,此時(shí),故兩直線平行時(shí)又之間的距離為,故選:B.11、A【解析】根據(jù)累加法得,,進(jìn)而得.【詳解】解:因?yàn)樗?,?dāng)時(shí),,,……,,所以,將以上式子相加得,所以,,.當(dāng)時(shí),,滿足;所以,.所以.故選:A12、B【解析】因?yàn)椋傻秒p曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點(diǎn)坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點(diǎn)不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號(hào)的焦距的最小值:故選:B.【點(diǎn)睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時(shí),要檢驗(yàn)等號(hào)是否成立,考查了分析能力和計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】先根據(jù)妹妹的銷售量的平均數(shù)為14,求得y,進(jìn)而得到其眾數(shù),然后再根據(jù)姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,得到姐姐的銷售量的中位數(shù).【詳解】因?yàn)槊妹玫匿N售量的平均數(shù)為14,所以,解得,由莖葉圖知:妹妹的銷售量的眾數(shù)是14,因?yàn)榻憬愕匿N售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,所以姐姐的銷售量的中位數(shù)是16,所以,解得,所以,故答案為:1314、【解析】由拋物線的焦半徑公式可求得的值.【詳解】拋物線的準(zhǔn)線方程為,由拋物線的焦半徑公式可得,解得.故答案為:.15、3【解析】根據(jù)導(dǎo)數(shù)幾何意義,可得的值,根據(jù)點(diǎn)M在切線上,可求得的值,即可得答案.【詳解】由導(dǎo)數(shù)的幾何意義可得,,又在切線上,所以,則=3,故答案為:3【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,考查分析理解的能力,屬基礎(chǔ)題.16、【解析】由已知中前項(xiàng)和,結(jié)合,分別討論時(shí)與時(shí)的通項(xiàng)公式,并由時(shí),的值不滿足時(shí)的通項(xiàng)公式,故要將數(shù)列的通項(xiàng)公式寫成分段函數(shù)的形式【詳解】∵數(shù)列前項(xiàng)和,∴當(dāng)時(shí),,又∵當(dāng)時(shí),,故,故答案為.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是等差數(shù)列的通項(xiàng)公式,其中正確理解由數(shù)列的前n項(xiàng)和Sn,求通項(xiàng)公式的方法和步驟是解答本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)對(duì)求導(dǎo),再根據(jù)題意有,據(jù)此列式求出;(2)由題可知對(duì)恒成立,即對(duì)恒成立,因此求出在區(qū)間上的最小值即可得出結(jié)論.【詳解】(1),則,因?yàn)樵谔幦〉脴O值,所以,解得,經(jīng)檢驗(yàn),當(dāng)時(shí),在處取得極值;(2)因?yàn)樵谏蠁握{(diào)遞減,所以對(duì)恒成立,則對(duì)恒成立,∵當(dāng)時(shí),,∴,即a的取值范圍為.【點(diǎn)睛】本題主要考查利用函數(shù)的單調(diào)性與極值求參,需要學(xué)生對(duì)相關(guān)基礎(chǔ)知識(shí)牢固掌握且靈活運(yùn)用.18、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)(?。┰O(shè)直線的方程為:,,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理、弦長公式可求面積表達(dá)式,利用基本不等式可求面積的最大值.(ⅱ)利用韋達(dá)定理化簡(jiǎn)可得,從而可得的軌跡為圓,故可證存在定點(diǎn),使得為定值.【詳解】(1)由題意知:,,又,則以為圓心且過的圓的半徑為,故,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)(ⅰ)設(shè)直線的方程為:,將代入得:,所以且,故.又,點(diǎn)到直線的距離,所以,等號(hào)當(dāng)僅當(dāng)時(shí)取,即當(dāng)時(shí),的面積取最大值為.(ⅱ)顯然直線的斜率一定存在,設(shè)直線的方程為:,,由(ⅰ)知:所以,所以,解得,,直線過定點(diǎn)或,所以D在以O(shè)Z為直徑的圓上,該圓的圓心為或,半徑等于,所以存在定點(diǎn)或,使得為定值.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問題.19、【解析】建立空間直角坐標(biāo)系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標(biāo)系,則設(shè)平面ACD1的法向量.,又為平面ACD1的一個(gè)法向量,化簡(jiǎn)得令x=1,得y=z=1.平面ACD1的一個(gè)法向量.【點(diǎn)睛】本題主要考查了求平面的法向量,屬于中檔題.20、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標(biāo)準(zhǔn)方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè)點(diǎn)、的坐標(biāo)為,,因?yàn)橹本€過點(diǎn),所以可設(shè)直線方程為,聯(lián)立方程,消去可得:,化簡(jiǎn)整理得,其中,所以,,因?yàn)椋运倪呅问瞧叫兴倪呅?,設(shè)平面四邊形的面積為,則,設(shè),則(),所以,因?yàn)?,所以,,所以四邊形面積的最大值為6.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,相交弦等問題,是偏難題.21、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)?,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.22、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論