版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省遵化市堡子店中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓的兩焦點(diǎn)之間的距離為A. B.C. D.2.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.3.如圖,四棱錐的底面是矩形,設(shè),,,是棱上一點(diǎn),且,則()A. B.C. D.4.如果直線與直線垂直,那么的值為()A. B.C. D.25.直線分別與軸,軸交于,兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是A. B.C. D.6.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大7.下列命題中,真命題的個(gè)數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點(diǎn)距點(diǎn)最近的距離為;A.個(gè) B.個(gè)C.個(gè) D.個(gè)8.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為9.《九章算術(shù)》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得,,,,遞減的比例為,那么“衰分比”就等于,今共有糧石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知乙分得石,甲、丙所得之和為石,則“衰分比”為()A. B.C. D.10.已知雙曲線的左、右焦點(diǎn)分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.11.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.12.已知分別是雙曲線的左、右焦點(diǎn),動(dòng)點(diǎn)P在雙曲線的左支上,點(diǎn)Q為圓上一動(dòng)點(diǎn),則的最小值為()A.6 B.7C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,則___________.14.矩形ABCD中,,在CD邊上任取一點(diǎn)M,則的最大邊是AB的概率為______15.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則實(shí)數(shù)m的值為______.16.某部門計(jì)劃對(duì)某路段進(jìn)行限速,為調(diào)查限速60km/h是否合理,對(duì)通過該路段的300輛汽車的車速進(jìn)行檢測(cè),將所得數(shù)據(jù)按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓C:的焦距為4,且過點(diǎn).(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心(高的交點(diǎn)),若存在,求出直線l的方程:若不存在,請(qǐng)說明理由.18.(12分)已知.(1)討論的單調(diào)性;(2)當(dāng)有最大值,且最大值大于時(shí),求取值范圍.19.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,離心率為,且過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線與橢圓相交于,兩點(diǎn)(A、B非橢圓頂點(diǎn)),求的最大值.20.(12分)在中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足(1)求A的大小;(2)若,的面積為,求的周長21.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(diǎn)(1)求證:平面;(2)求證:平面22.(10分)已知等差數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)求的最大值及相應(yīng)的的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個(gè)焦點(diǎn)的坐標(biāo)為,因此可知兩焦點(diǎn)之間的距離為,故選C考點(diǎn):橢圓的簡單幾何性質(zhì)點(diǎn)評(píng):解決的關(guān)鍵是將方程變?yōu)闃?biāo)準(zhǔn)式,然后結(jié)合性質(zhì)得到結(jié)論,屬于基礎(chǔ)題2、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點(diǎn)在橢圓上得,由橢圓的對(duì)稱性可得,則,故橢圓方程為.故選:A.3、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B4、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A5、A【解析】分析:先求出A,B兩點(diǎn)坐標(biāo)得到再計(jì)算圓心到直線距離,得到點(diǎn)P到直線距離范圍,由面積公式計(jì)算即可詳解:直線分別與軸,軸交于,兩點(diǎn),則點(diǎn)P在圓上圓心為(2,0),則圓心到直線距離故點(diǎn)P到直線的距離的范圍為則故答案選A.點(diǎn)睛:本題主要考查直線與圓,考查了點(diǎn)到直線的距離公式,三角形的面積公式,屬于中檔題6、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對(duì)雙曲線開口大小的影響即可得解.【詳解】解:對(duì)于A,越大,雙曲線開口越大,故A錯(cuò)誤;對(duì)于B,越小,雙曲線開口越小,故B錯(cuò)誤;對(duì)于C,由,越大,則越大,雙曲線開口越大,故C正確;對(duì)于D,越小,則越小,雙曲線開口越小,故D錯(cuò)誤.故選:C.7、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對(duì)于(1),若曲線為雙曲線,則,即,解得或,因?yàn)榛?,因此,是為雙曲線的充分不必要條件,(1)錯(cuò);對(duì)于(2),若,則或,(2)錯(cuò);對(duì)于(3),,則,(3)對(duì);對(duì)于(4),設(shè)點(diǎn)為橢圓上一點(diǎn),則且,則點(diǎn)到點(diǎn)的距離為,(4)錯(cuò).故選:A.8、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對(duì)于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對(duì)于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對(duì)于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對(duì)于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯(cuò)誤故選D【點(diǎn)睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力9、A【解析】根據(jù)題意,設(shè)衰分比為,甲分到石,,然后可得和,解出、的值即可【詳解】根據(jù)題意,設(shè)衰分比為,甲分到石,,又由今共有糧食石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知乙分得90石,甲、丙所得之和為164石,則,,解得:,,故選:A10、D【解析】直線的斜率為,計(jì)算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點(diǎn)睛】本題考查了雙曲線的漸近線,與圓的關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.11、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A12、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當(dāng),,三點(diǎn)共線時(shí),最小,最小值為,而,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由空間向量數(shù)量積的坐標(biāo)運(yùn)算可得答案.【詳解】因?yàn)?,,,所以?故答案為:2.14、【解析】先利用勾股定理得出滿足條件的長度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設(shè),當(dāng)時(shí),,;當(dāng)時(shí),,所以當(dāng)?shù)降木嚯x都大于時(shí),的最大邊是AB,所以的最大邊是AB的概率為.故答案為:15、【解析】分別求出橢圓和拋物線的焦點(diǎn)坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點(diǎn)的坐標(biāo)為,拋物線的焦點(diǎn)坐標(biāo)為,∵拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,∴,即,故答案為:.16、①.②.【解析】根據(jù)個(gè)小矩形面積之和為1即可求出的值;根據(jù)頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在:【解析】(1)根據(jù)題意,列出關(guān)于a,b,c的關(guān)系,計(jì)算求值,即可得答案.(2)由(1)可得B、F點(diǎn)坐標(biāo),可得直線BF的斜率,根據(jù)F為垂心,可得,可得直線l的斜率,設(shè)出直線l的方程,與橢圓聯(lián)立,根據(jù)韋達(dá)定理,結(jié)合垂心的性質(zhì),列式求解,即可得答案.【小問1詳解】因?yàn)榻咕酁?,所以,即,又過點(diǎn),所以,又,聯(lián)立求得,所以橢圓C的方程為【小問2詳解】由(1)可得,所以,因?yàn)镕為垂心,直線BF與直線l垂直,所以,則,即直線l的斜率為1,設(shè)直線l的方程為,,與橢圓聯(lián)立得,,所以,因?yàn)镕為垂心,所以直線BN與直線MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又時(shí),直線l過點(diǎn)B,不符合題意,所以,所以存在直線l:,滿足題意.18、(1)時(shí),在是單調(diào)遞增;時(shí),在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當(dāng)時(shí)在無最大值,當(dāng)時(shí)最大值為因此.令,則在是增函數(shù),當(dāng)時(shí),,當(dāng)時(shí),因此a的取值范圍是.試題解析:(Ⅰ)的定義域?yàn)?,若,則,在是單調(diào)遞增;若,則當(dāng)時(shí),當(dāng)時(shí),所以在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)由(Ⅰ)知當(dāng)時(shí)在無最大值,當(dāng)時(shí)在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當(dāng)時(shí),,當(dāng)時(shí),因此a取值范圍是.考點(diǎn):本題主要考查導(dǎo)數(shù)在研究函數(shù)性質(zhì)方面的應(yīng)用及分類討論思想.19、(1)(2)【解析】(1)根據(jù)離心率和點(diǎn)在橢圓上建立方程,結(jié)合,然后解出方程即可(2)設(shè)直線的斜率為,聯(lián)立直線與橢圓的方程,然后利用韋達(dá)定理表示出,兩點(diǎn)的坐標(biāo)關(guān)系,并表示出為直線斜率的函數(shù),然后求出的最大值【小問1詳解】由橢圓過點(diǎn),則有:由可得:解得:則橢圓的方程為:【小問2詳解】由(1)得,,已知直線不過橢圓長軸頂點(diǎn)則直線的斜率不為,設(shè)直線的方程為:設(shè),,聯(lián)立直線方程和橢圓方程整理可得:故是恒成立的根據(jù)韋達(dá)定理可得:,則有:由,可得:所以的最大值為:20、(1)(2)【解析】(1)通過正弦定理將邊化為角的關(guān)系,可得,進(jìn)而可得結(jié)果;(2)由面積公式得,結(jié)合余弦定理得,進(jìn)而得結(jié)果.【小問1詳解】∵∴由正弦定理,得∴∵,∴,故【小問2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長為21、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點(diǎn)M,連接ME,則M為中點(diǎn).根據(jù)三角形的中位線定理和平行四邊形的判斷和性質(zhì)可證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代科技助力白水泥行業(yè)財(cái)務(wù)風(fēng)險(xiǎn)管理
- 衛(wèi)浴潔具國慶節(jié)活動(dòng)方案
- 環(huán)境藝術(shù)設(shè)計(jì)與室內(nèi)設(shè)計(jì)的審美互動(dòng)
- 生產(chǎn)工藝流程中的質(zhì)量控制與安全管理
- 現(xiàn)代服務(wù)業(yè)在商業(yè)地產(chǎn)中的價(jià)值挖掘
- 物流技術(shù)與管理教育的新模式
- Unit 4 Plants around us Lesson 6(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級(jí)上冊(cè)
- 7《可愛的動(dòng)物》(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治一年級(jí)下冊(cè)
- Unit 2 Whats your name (Story time)(說課稿)-2024-2025學(xué)年譯林版(三起)(2024)英語三年級(jí)上冊(cè)001
- Unit 4 A glimpse of the future 說課稿-2023-2024學(xué)年高二下學(xué)期英語外研版(2019)選擇性必修第三冊(cè)001
- 2024化工園區(qū)危險(xiǎn)品運(yùn)輸車輛停車場建設(shè)規(guī)范
- 信息資源管理(馬費(fèi)成-第三版)復(fù)習(xí)重點(diǎn)
- 郵輪外部市場營銷類型
- GB/T 42460-2023信息安全技術(shù)個(gè)人信息去標(biāo)識(shí)化效果評(píng)估指南
- 05G359-3 懸掛運(yùn)輸設(shè)備軌道(適用于一般混凝土梁)
- 工程與倫理課程
- CKDMBD慢性腎臟病礦物質(zhì)及骨代謝異常
- 潮汕英歌舞課件
- 田字格模版內(nèi)容
- 第一章 公共政策分析的基本理論與框架
- 熱連軋帶鋼生產(chǎn)工藝
評(píng)論
0/150
提交評(píng)論