河南省通許縣麗星高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
河南省通許縣麗星高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
河南省通許縣麗星高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
河南省通許縣麗星高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
河南省通許縣麗星高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省通許縣麗星高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是B,則等于()A.4 B.C. D.22.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.23.如圖,平行六面體中,與的交點(diǎn)為,設(shè),則選項(xiàng)中與向量相等的是()A. B.C. D.4.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.5.已知拋物線x2=4y上有一條長為6的動(dòng)弦AB,則AB的中點(diǎn)到x軸的最短距離為()A. B.C.1 D.26.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.7.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時(shí)認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時(shí)它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)f(x)的導(dǎo)函數(shù),若,對,且.總有,則下列選項(xiàng)正確的是()A. B.C. D.8.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對,使得成立,則C.當(dāng)時(shí),D.若方程有4個(gè)不等的實(shí)根,則9.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”10.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶祝活動(dòng)標(biāo)識(如圖1).其中“100”的兩個(gè)“0”設(shè)計(jì)為兩個(gè)半徑為R的相交大圓,分別內(nèi)含一個(gè)半徑為r的同心小圓,且同心小圓均與另一個(gè)大圓外切(如圖2).已知,則由其中一個(gè)圓心向另一個(gè)小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.11.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.12.已知各項(xiàng)均為正數(shù)的等比數(shù)列{},=5,=10,則=A. B.7C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點(diǎn)分別為,若橢圓上的點(diǎn)P滿足軸,,則該橢圓的離心率為___________14.甲、乙兩隊(duì)進(jìn)行籃球決賽,采取七場四勝制(當(dāng)一隊(duì)贏得四場勝利時(shí),該隊(duì)獲勝,決賽結(jié)束).根據(jù)前期比賽成績,甲隊(duì)的主客場安排依次為“主主客客主客主”.設(shè)甲隊(duì)主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨(dú)立,則甲隊(duì)以4∶1獲勝的概率是____________15.已知斜率為的直線與橢圓相交于不同的兩點(diǎn)A,B,M為y軸上一點(diǎn)且滿足|MA|=|MB|,則點(diǎn)M的縱坐標(biāo)的取值范圍是___________.16.若圓C的方程為,點(diǎn)P是圓C上的動(dòng)點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)是否存在實(shí)數(shù),,,對任意的正數(shù),都有成立?若存在,求出,,的所有值;若不存在,請說明理由.18.(12分)如圖,已知橢圓:()的左、右焦點(diǎn)分別為、,離心率為.過的直線與橢圓的一個(gè)交點(diǎn)為,過垂直于的直線與橢圓的一個(gè)交點(diǎn)為,.(1)求橢圓的方程和點(diǎn)的軌跡的方程;(2)若曲線上的動(dòng)點(diǎn)到直線:的最大距離為,求的值.19.(12分)設(shè)命題對于任意,不等式恒成立.命題實(shí)數(shù)a滿足(1)若命題p為真,求實(shí)數(shù)a的取值范圍;(2)若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍20.(12分)已知橢圓上的點(diǎn)到橢圓焦點(diǎn)的最大距離為3,最小距離為1(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,分別是橢圓的左右頂點(diǎn),是橢圓上異于,的任意一點(diǎn),直線,分別交軸于點(diǎn),,求的值21.(12分)在平面直角坐標(biāo)系xOy中,拋物線:,點(diǎn),過點(diǎn)的直線l與拋物線交于A,B兩點(diǎn):當(dāng)l與拋物線的對稱軸垂直時(shí),(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若點(diǎn)A在第一象限,記的面積為,的面積為,求的最小值22.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),記在區(qū)間的最大值為M,最小值為N,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是B,再利用兩點(diǎn)之間的距離即可求得結(jié)果.【詳解】點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是故選:A2、B【解析】根據(jù)等比數(shù)列的性質(zhì)計(jì)算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項(xiàng)的符號相同,所以,即.故選:B3、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進(jìn)而可知與向量相等的表達(dá)式.【詳解】連接,如下圖示:,.故選:B4、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D5、D【解析】由題意知,拋物線的準(zhǔn)線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設(shè)弦AB的中點(diǎn)為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點(diǎn)),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.6、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.7、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項(xiàng).【詳解】由,得在上單調(diào)遞增,因?yàn)?,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點(diǎn)處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點(diǎn)與點(diǎn)連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C8、B【解析】函數(shù),,,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域?yàn)椋瘮?shù),的值域?yàn)椋魧?,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個(gè)不等的實(shí)根,則,且時(shí),有2個(gè)不等的實(shí)根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域?yàn)椋瘮?shù),的值域?yàn)?,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當(dāng)時(shí),,即,因此C不正確;D.方程有4個(gè)不等的實(shí)根,則,且時(shí),有2個(gè)不等的實(shí)根,結(jié)合圖象可知,因此D不正確故選:B9、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個(gè)量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個(gè)為真命題,當(dāng)二者為一真一假時(shí),為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯(cuò)誤,故選:C10、C【解析】作出圖形,進(jìn)而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.11、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因?yàn)閳A關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時(shí)取等號,故選:C.12、A【解析】由等比數(shù)列的性質(zhì)知,a1a2a3,a4a5a6,a7a8a9成等比數(shù)列,所以a4a5a6=故答案為考點(diǎn):等比數(shù)列的性質(zhì)、指數(shù)冪的運(yùn)算、根式與指數(shù)式的互化等知識,轉(zhuǎn)化與化歸的數(shù)學(xué)思想二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意分析為直角三角形,得到關(guān)于a、c的齊次式,即可求出離心率.【詳解】設(shè),則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:14、18【解析】本題應(yīng)注意分情況討論,即前五場甲隊(duì)獲勝的兩種情況,應(yīng)用獨(dú)立事件的概率的計(jì)算公式求解.題目有一定的難度,注重了基礎(chǔ)知識、基本計(jì)算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時(shí),甲隊(duì)以獲勝的概率是前四場中有一場主場輸,第五場贏時(shí),甲隊(duì)以獲勝的概率是綜上所述,甲隊(duì)以獲勝的概率是【點(diǎn)睛】由于本題題干較長,所以,易錯(cuò)點(diǎn)之一就是能否靜心讀題,正確理解題意;易錯(cuò)點(diǎn)之二是思維的全面性是否具備,要考慮甲隊(duì)以獲勝的兩種情況;易錯(cuò)點(diǎn)之三是是否能夠準(zhǔn)確計(jì)算15、【解析】設(shè)直線的方程為,由消去并化簡得,設(shè),,,解得..由于,所以是垂直平分線與軸的交點(diǎn),垂直平分線方程為,令得,由于,所以.也即的縱坐標(biāo)的取值范圍是.故答案為:16、##【解析】根據(jù)點(diǎn)與圓的位置關(guān)系求得正確答案.【詳解】圓的方程可化為,所以圓心為,半徑.由于,所以原點(diǎn)在圓外,所以最大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為:,無極大值(2),,【解析】(1)先求導(dǎo)求單調(diào)性,再判斷極值點(diǎn)求極值即可;(2)易知,只需要為函數(shù)和的公切線即可,求出公切線,代入后分別證明和成立即可.【小問1詳解】由題意知:,令,解得,令,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減,所以為函數(shù)的極小值點(diǎn),即極小值為:,無極大值.【小問2詳解】設(shè),易知,所以點(diǎn)是和的公共點(diǎn),要使成立,只需要為函數(shù)和的公切線即可,由(1)知,,所以在點(diǎn)處的切線為:,同理可得在點(diǎn)處的切線為:,由題意知為同一條直線,所以解得,即等價(jià)于;下面證明這個(gè)式子成立:首先證明等價(jià)于,設(shè),所以,恒成立,所以單調(diào)遞增,易知,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞減,在單調(diào)遞增,所以,故不等式成立,即成立;再證明:等價(jià)于,設(shè),所以,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞增,在單調(diào)遞減,所以,故不等式成立,即成立;綜上所述,存在,,使得成立.故:,,.【點(diǎn)睛】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運(yùn)用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.18、(1)橢圓的方程為,點(diǎn)的軌跡的方程為(2)【解析】(1)由題意可得,求出,再結(jié)合,求出,從而可得橢圓的方程,設(shè),則由題意可得,坐標(biāo)代入化簡可得點(diǎn)的軌跡的方程,(2)由題意結(jié)合點(diǎn)到直線的距離公式可得,設(shè),將直線方程代入橢圓方程中消去,整理利用根與系數(shù)的關(guān)系,由,可得,因?yàn)?,代入化簡?jì)算可求得答案【小問1詳解】由題意得,解得,則,所以橢圓的方程,設(shè),則由題意可得,所以,所以,所以點(diǎn)軌跡的方程為【小問2詳解】由(1)知曲線是以原點(diǎn)為圓心,1為半徑的圓,因?yàn)榍€上的動(dòng)點(diǎn)到直線:的最大距離為,所以,得,設(shè),由,得,所以,,因?yàn)椋?,所以,所以,因?yàn)?,所以,所以,,所以,得,得(舍去),?9、(1)(2)【解析】(1)由即可獲解(2)p、q一真一假,分情況討論即可【小問1詳解】由命題為真,得任意,不等式恒成立所以即所以實(shí)數(shù)的取值范圍為【小問2詳解】由命題為真,得因?yàn)椤盎颉睘檎?“且”為假,所以p、q一真一假若真假,則,即若假真,即所以實(shí)數(shù)的取值范圍為20、(1);(2)-1.【解析】(1)根據(jù)橢圓的性質(zhì)進(jìn)行求解即可;(2)根據(jù)直線的方程,結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解即可.【小問1詳解】由題意得,,,所以,橢圓.【小問2詳解】由題意可知,,設(shè),則,直線,直線分別令得,,,.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解是解題的關(guān)鍵.21、(1).(2)8.【解析】(1)將點(diǎn)代入拋物線方程可解得基本量.(2)設(shè)直線AB為,代入聯(lián)立得關(guān)于的一元二次方程,運(yùn)用韋達(dá)定理,得到關(guān)于的函數(shù)關(guān)系,再求函數(shù)最值.【小問1詳解】當(dāng)l與拋物線的對稱軸垂直時(shí),,,則代入拋物線方程得,所以拋物線方程是【小問2詳解】設(shè)點(diǎn),,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當(dāng),,單調(diào)遞減;,,單調(diào)遞增;∴的最小值為,此時(shí),.22、(1)答案見解析;(2).【解析】(1)求得,對參數(shù)進(jìn)行分類討論,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論