




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省新鄉(xiāng)市第七中學2023-2024學年數(shù)學高二上期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐O—ABC,點M,N分別為線段AB,OC的中點,且,,,用,,表示,則等于()A. B.C. D.2.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.3.拋物線的焦點為,準線為,焦點在準線上的射影為點,過任作一條直線交拋物線于兩點,則為()A.銳角 B.直角C.鈍角 D.銳角或直角4.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.5.等差數(shù)列中,,,則當取最大值時,的值為A.6 B.7C.6或7 D.不存在6.,則()A. B.C. D.7.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件8.從橢圓的一個焦點發(fā)出的光線,經過橢圓反射后,反射光線經過橢圓的另一個焦點;從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線的反向延長線經過雙曲線的另一個焦點.如圖①,一個光學裝置由有公共焦點的橢圓與雙曲線構成,現(xiàn)一光線從左焦點發(fā)出,依次經與反射,又回到了點,歷時秒;若將裝置中的去掉,如圖②,此光線從點發(fā)出,經兩次反射后又回到了點,歷時秒;若,則的長軸長與的實軸長之比為()A. B.C. D.9.已知命題,,則()A., B.,C., D.,10.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.411.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.912.某中學的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數(shù)為()A.13 B.14C.15 D.16二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.14.已知函數(shù),則曲線在處的切線方程為___________.15.已知為平面的一個法向量,為直線的方向向量.若,則__________.16.設函數(shù)f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關系為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知定點,圓:,點Q為圓上動點,線段MQ的垂直平分線交NQ于點P,記P的軌跡為曲線C(1)求曲線C的方程;(2)過點M與N作平行直線和,分別交曲線C于點A,B和點D,E,求四邊形ABDE面積的最大值18.(12分)某省食品藥品監(jiān)管局對15個大學食堂“進貨渠道合格性”和“食品安全”進行量化評估,滿分為10分,大部分大學食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:分數(shù)段食堂個數(shù)1383(1)現(xiàn)從15個大學食堂中隨機抽取3個,求至多有1個大學食堂的評分不低于9分的概率;(2)以這15個大學食堂的評分數(shù)據(jù)評估全國的大學食堂的評分情況,若從全國的大學食堂中任選3個,記X表示抽到評分不低于9分的食堂個數(shù),求X的分布列及數(shù)學期望.19.(12分)已知雙曲線的兩個焦點為的曲線C上.(1)求雙曲線C的方程;(2)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程20.(12分)已知的三個頂點的坐標分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積21.(12分)已知橢圓E的中心在坐標原點,焦點在坐標軸上,且經過,,三點,求橢圓E的標準方程22.(10分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用空間向量基本定理進行計算.【詳解】.故選:A2、C【解析】設出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.3、D【解析】設出直線方程,聯(lián)立拋物線方程,利用韋達定理,求得,根據(jù)其結果即可判斷和選擇.【詳解】為說明問題,不妨設拋物線方程,則,直線斜率顯然不為零,故可設直線方程為,聯(lián)立,可得,設坐標為,則,故,當時,,;當時,,;故為銳角或直角.故選:D.4、D【解析】求得,根據(jù)的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關計算,屬于中檔題.5、C【解析】設等差數(shù)列的公差為∵∴∴∴∵∴當取最大值時,的值為或故選C6、B【解析】求出,然后可得答案.【詳解】,所以故選:B7、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.8、D【解析】在圖①和圖②中,利用橢圓和雙曲線的定義,分別求得和的周長,再根據(jù)光速相同,且求解.【詳解】在圖①中,由橢圓的定義得:,由雙曲線的定義得,兩式相減得,所以的周長為,在圖②中,的周長為,因為光速相同,且,所以,即,所以,即的長軸長與的實軸長之比為,故選:D9、C【解析】利用全稱量詞命題的否定可得出結論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.10、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B11、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B12、C【解析】由題意可得募捐構成了一個以10元為首項,以10元為公差的等差數(shù)列,設共募捐了天,然后建立關于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構成了一個以10元為首項,以10元為公差的等差數(shù)列,根據(jù)題意,設共募捐了天,則,解得或(舍去),所以,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)離心率得出,結合得出關系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.14、【解析】求出函數(shù)的導函數(shù),即可求出切線的斜率,再利用點斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點處的切線方程為,即.故答案為:.15、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:16、a>b【解析】構造函數(shù)F(x)=xf(x),利用F(x)的單調性求解即可.【詳解】設函數(shù)F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數(shù),又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)6【解析】(1)由橢圓的定義求解(2)設直線方程后與橢圓方程聯(lián)立,由韋達定理表示弦長,將面積轉化為函數(shù)后求求解【小問1詳解】由題意可得,所以動點P的軌跡是以M,N為焦點,長軸長為4的橢圓,即曲線C的方程為:;【小問2詳解】由題意可設的方程為,聯(lián)立方程得,設,,則由根與系數(shù)關系有,所以,根據(jù)橢圓的對稱性可得,與的距離即為點M到直線的距離,為,所以四邊形ABDE面積為,令得,由對勾函數(shù)性質可知:當且僅當,即時,四邊形ABDE面積取得最大值為6.18、(1)(2)分布列見解析,【解析】(1)利用古典概型的概率公式可求概率.(2)由題設可得,故利用二項分布可求的分布列,利用公式可求其期望.【小問1詳解】設至多有1個大學食堂的評分不低于9分為事件,則.所以至多有1個大學食堂的評分不低于9分的概率為.【小問2詳解】任意一個大學食堂,其評分不低于9分的概率為,故,所以,,,,的分布列為:0123.19、(1)雙曲線方程為(2)滿足條件的直線l有兩條,其方程分別為y=和【解析】(1)由雙曲線焦點可得值,進而可得到的關系式,將點P代入雙曲線可得到的關系式,解方程組可求得值,從而確定雙曲線方程;(2)求直線方程采用待定系數(shù)法,首先設出方程的點斜式,與雙曲線聯(lián)立,求得相交的弦長和O到直線的距離,代入面積公式可得到直線的斜率,求得直線方程試題解析:(1)由已知及點在雙曲線上得解得;所以,雙曲線的方程為(2)由題意直線的斜率存在,故設直線的方程為由得設直線與雙曲線交于、,則、是上方程的兩不等實根,且即且①這時,又即所以即又適合①式所以,直線的方程為與20、(1)(2)【解析】(1)先求得的中點,由此求得邊AC上的中線所在直線方程.(2)結合點到直線距離公式求得的面積.【小問1詳解】的中點為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.21、【解析】分橢圓的焦點在軸上與焦點在軸上,兩種情況討論,利用待定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司春季種植活動方案
- 2025年語言學基礎認知考試題及答案
- 2025年專業(yè)英語與外語能力測試的知識考核考試題及答案
- 2025年項目風險管理課程考試題及答案
- 2025年物業(yè)管理師考試試題及答案
- 2025年司法考試試題及答案
- 2025年數(shù)字創(chuàng)新管理師職業(yè)資格考試試卷及答案
- 2025年計算機視覺與圖像處理理論考試試題及答案
- 2025年高考數(shù)學科目模擬試題及答案
- 2025年檔案管理與信息資源考試試卷及答案
- 2024年11月-礦山隱蔽致災因素普查
- DBJ51T 163-2021 成都軌道交通設計防火標準
- 加熱爐安全操作規(guī)程培訓課件
- 學校紅十字會工作手冊
- 特種設備隱患排查與整治
- 2024年人教版七年級下冊生物期末檢測試卷及答案
- 藥劑師知識科普大賽單選題100道及答案解析
- 荊州市國土空間總體規(guī)劃(2021-2035年)
- 2024年變電設備檢修工(高級技師)技能鑒定理論考試題庫(含答案)
- 單位食堂配送菜合同協(xié)議書
- 家具家居運輸合同三篇
評論
0/150
提交評論