版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省湘西2023年數學高二上期末學業(yè)質量監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題正確的是()A.經過三點確定一個平面B.經過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面2.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()A.2 B.6C.4 D.123.圓關于直線對稱圓的標準方程是()A. B.C. D.4.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個數為()A.0個 B.1個C.2個 D.3個5.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.6.橢圓焦距為()A. B.8C.4 D.7.已知圓的方程為,直線:恒過定點,若一條光線從點射出,經直線上一點反射后到達圓上的一點,則的最小值是()A.3 B.4C.5 D.68.已知集合,則()A. B.C. D.9.已知是兩條不同的直線,是兩個不同的平面,則下列結論正確的是()A.若,則 B.若,則C.若,則 D.若,則10.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.11.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實數a的值為()A.﹣2 B.C.1 D.1或﹣212.設,,且,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長方體ABCD—A1B1C1D1,AB=BC=2,CC1=1,則直線AD1與B1D所成角的余弦值為__.14.函數在處的切線方程是_________15.設橢圓標準方程為,則該橢圓的離心率為______16.定義在R上的函數滿足,其中為自然對數的底數,,則滿足的a的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的一個焦點坐標為,離心率為(1)求橢圓C的標準方程;(2)O為坐標原點,點P在橢圓C上,若的面積為,求點P的坐標18.(12分)如圖,在四棱錐中,,為的中點,連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.19.(12分)書籍是精神世界的入口,閱讀讓精神世界閃光,閱讀逐漸成為許多人的一種生活習慣,每年4月23日為世界讀書日.某研究機構為了解當地年輕人的閱讀情況,通過隨機抽樣調查了100位年輕人,對這些人每天的閱讀時間(單位:分鐘)進行統計,得到樣本的頻率分布直方圖,如圖所示:(1)求的值;(2)為了進一步了解年輕人的閱讀方式,研究機構采用分層抽樣的方法從每天閱讀時間位于,和的年輕人中抽取5人,再從中任選2人進行調查,求其中至少有1人每天閱讀時間位于的概率.20.(12分)在三角形ABC中,三個頂點的坐標分別為,,,且D為AC的中點.(1)求三角形ABC的外接圓M方程;(2)求直線BD與外接圓M相交產生的相交弦的長度.21.(12分)如圖,在四棱錐中,底面是正方形,側面底面,為側棱上一點(1)求證:;(2)若為中點,平面與側棱于點,且,求四棱錐的體積22.(10分)已知數列的前項和為,若.(1)求的通項公式;(2)設,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由平面的基本性質結合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D2、C【解析】根據題設條件求出橢圓的長半軸,再借助橢圓定義即可作答.【詳解】由橢圓+y2=1知,該橢圓的長半軸,A是橢圓一個焦點,設另一焦點為,而點在BC邊上,點B,C又在橢圓上,由橢圓定義得,所以的周長故選:C3、D【解析】先根據圓的標準方程得到圓的圓心和半徑,求出圓心關于直線的對稱點,進而寫出圓的標準方程.【詳解】因為圓的圓心為,半徑為,且關于直線對稱的點為,所以所求圓的圓心為、半徑為,即所求圓的標準方程為.故選:D.4、B【解析】先判斷出原命題和逆命題的真假,進而根據互為逆否的兩個命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.5、C【解析】取中點,連接,,證明平面,從而可得為與平面所成角,再利用三角函數計算的正弦值.【詳解】取中點,連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C6、A【解析】由題意橢圓的焦點在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點在軸上故焦距故選:A7、B【解析】求得定點,然后得到關于直線對稱點為,然后可得,計算即可.【詳解】直線可化為,令解得所以點的坐標為.設點關于直線的對稱點為,則由,解得,所以點坐標為.由線段垂直平分線的性質可知,,所以(當且僅當,,,四點共線時等號成立),所以的最小值為4.故選:B.8、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.9、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C10、B【解析】根據空間向量運算求得正確答案.【詳解】.故選:B11、B【解析】由題意,利用兩直線垂直的性質,兩直線垂直時,一次項對應系數之積的和等于0,計算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B12、A【解析】由空間向量垂直的坐標表示可求得實數的值.【詳解】由已知可得,解得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以為原點,所在直線為軸的正方向建立空間直角坐標系,求出,的坐標,由向量夾角公式可得答案.【詳解】以為原點,所在直線為軸的正方向建立如圖的坐標系,∵AB=BC=2,CC1=1,∴,,,,則,,則,,則cos<,>==,即AD1與B1D所成角的余弦值為,故答案為:.14、【解析】求得,利用導數的幾何意義,結合直線的點斜式方程,即可求得結果.【詳解】因為,則,,,故在處的切線方程是,整理得:.故答案為:.15、##【解析】求出、的值,即可求得橢圓的離心率.【詳解】在橢圓中,,,則,因此,該橢圓的離心率為.故答案為:.16、【解析】設,求出其導數結合條件得出在上單調遞減,將問題轉化為求解,由的單調性可得答案.【詳解】設,則由,則所以在上單調遞減.又由,即,即,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或或或【解析】(1)根據已知條件求得,由此求得橢圓的標準方程.(2)根據三角形的面積列方程,化簡求得點的坐標.【小問1詳解】設橢圓C的焦距為,由題意有,得,,故橢圓C的標準方程為;【小問2詳解】設點P的坐標為,由的面積為,有,得,有,得,故點P的坐標為或或或18、(1)證明過程見解析;(2).【解析】(1)根據平行四邊形的判定定理和性質,結合線面垂直的判定定理進行證明即可;(2)利用空間向量夾角公式進行求解即可.【小問1詳解】因為為的中點,所以,而,所以四邊形是平行四邊形,因此,因為,,為的中點,所以,,而,因為,所以,而平面,所以平面;【小問2詳解】根據(1),建立如圖所示的空間直角坐標系,,于是有:,則平面的法向量為:,設平面的法向量為:,所以,設平面與平面的夾角為,所以.19、(1)(2)【解析】(1)由頻率之和為1求參數.(2)由分層抽樣的比例可得抽取的5人中,和分別為:1人,2人,2人,再應用列舉法寫出所有基本事件,根據古典概型的概率計算即可.小問1詳解】根據頻率分布直方圖得:,解得;【小問2詳解】由于,和的頻率之比為:,故抽取的5人中,,和別為:1人,2人,2人,記的1人為,的2人為,,的2人為,,故隨機抽取2人共有,,,,,,,,,10種,其中至少有1人每天閱讀時間位于的包含,,,,,,共7種,故概率.20、(1);(2).【解析】(1)根據題意,結合直角三角形外接圓的圓心為斜邊的中點,即可求解;(2)根據題意,結合點到直線的距離,以及弦長公式,即可求解.【小問1詳解】根據題意,易知是以BC為斜邊的直角三角形,故外接圓圓心是B,C的中點,半徑為BC長度的一半為,故三角形ABC的外接圓M方程為.【小問2詳解】因為D為AC的中點,所以易求.故直線BD的方程為,圓心到直線的距離,故相交弦的長度為.21、(1)證明見解析(2)【解析】(1)利用面面垂直的性質定理可得出平面,再利用線面垂直的性質可得出;(2)分析可知為的中點,平面,計算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因為四邊形為正方形,則,因為側面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因為,平面,平面,所以,平面,因為平面,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年租賃合同(設備)
- 2024年進出口業(yè)務委托合同2篇
- 2024年環(huán)保公益捐贈合同3篇
- 2025年度美容院商鋪租賃及美容院品牌授權合同3篇
- 2024年西餐廳特許經營權出租及轉讓合同
- 2025年度智能家電產品采購與市場推廣合同3篇
- 2024年遺體接送與防腐處理合同3篇
- 教育心理學復習參考試題
- 2025年度旅游景區(qū)門衛(wèi)安全責任書3篇
- 2024綠城物業(yè)服務公司戰(zhàn)略合作合同
- 2025年進出口貿易公司發(fā)展戰(zhàn)略和經營計劃
- 2025年上海市嘉定區(qū)高三語文一模作文8篇范文:人們往往用“有用”作為判別事物并做出選擇的重要標準
- 2025年行政執(zhí)法人員執(zhí)法資格考試必考題庫及答案(共232題)
- 網站建設合同范本8篇
- 污水站安全培訓
- 山東省濟寧市2023-2024學年高一上學期1月期末物理試題(解析版)
- 宜賓天原5萬噸氯化法鈦白粉環(huán)評報告
- 教育機構年度總結和來年規(guī)劃
- 2024年工廠股權轉讓盡職調查報告3篇
- 2025年上半年河南鄭州滎陽市招聘第二批政務輔助人員211人筆試重點基礎提升(共500題)附帶答案詳解
- 山東省濟南市歷城區(qū)2024-2025學年七年級上學期期末數學模擬試題(無答案)
評論
0/150
提交評論