湖南省岳陽市達標名校2023年數(shù)學高二上期末調研試題含解析_第1頁
湖南省岳陽市達標名校2023年數(shù)學高二上期末調研試題含解析_第2頁
湖南省岳陽市達標名校2023年數(shù)學高二上期末調研試題含解析_第3頁
湖南省岳陽市達標名校2023年數(shù)學高二上期末調研試題含解析_第4頁
湖南省岳陽市達標名校2023年數(shù)學高二上期末調研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省岳陽市達標名校2023年數(shù)學高二上期末調研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓的方程為,圓的方程為,其中.那么這兩個圓的位置關系不可能為()A.外離 B.外切C.內含 D.內切2.圓關于直線l:對稱的圓的方程為()A. B.C. D.3.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.4.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.5.在棱長為1的正方體中,點,分別是,的中點,點是棱上的點且滿足,則兩異面直線,所成角的余弦值是()A. B.C. D.6.設,命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且7.若,則實數(shù)的取值范圍是()A. B.C. D.8.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標準方程為()A. B.C. D.9.命題“若,則”為真命題,那么不可能是()A. B.C. D.10.已知{}為等比數(shù)列.,則=()A.—4 B.4C.—4或4 D.1611.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.12.若拋物線的焦點為,則其標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為________.14.某單位現(xiàn)有三個部門競崗,甲、乙、丙三人每人只競選一個部門,設事件A為“三人競崗部門都不同”,B為“甲獨自競崗一個部門”,則______.15.已知,動點滿足,則點的軌跡方程為___________.16.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數(shù)m的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象在點P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.18.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.19.(12分)橢圓C:的左右焦點分別為,,P為橢圓C上一點.(1)當P為橢圓C的上頂點時,求的余弦值;(2)直線與橢圓C交于A,B,若,求k20.(12分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.21.(12分)已知圓臺的上下底面半徑分別為,母線長為.求:(1)圓臺的高;(2)圓臺的體積注:圓臺體積公式:,其中,S分別為上下底面面積,h為圓臺的高22.(10分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標準方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關系判斷.【詳解】由兩圓的標準方程可得,,,;則,所以兩圓不可能內含.故選:C.2、A【解析】首先求出圓的圓心坐標與半徑,再設圓心關于直線對稱的點的坐標為,即可得到方程組,求出、,即可得到圓心坐標,從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設圓心關于直線對稱的點的坐標為,則,解得,即圓關于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A3、B【解析】利用函數(shù)的奇偶性將函數(shù)轉化為f(M)≤f(N)的形式,再利用單調性脫去對應法則f,轉化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調性的判定及應用,考查了不等式的解法,屬于中檔題4、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質.5、A【解析】建立空間直角坐標系,寫出點、、、和向量的、坐標,運用求異面直線余弦值的公式即可求出.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標第,則,,,,故,,,故兩異面直線,所成角的余弦值是.故選:A.【點睛】本題考查求異面直線所成角的余弦值,屬于中檔題.6、C【解析】根據(jù)否命題的定義直接可得.【詳解】根據(jù)否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.7、B【解析】由題意可知且,構造函數(shù),可得出,由函數(shù)的單調性可得出,利用導數(shù)求出函數(shù)的最小值,可得出關于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構造函數(shù),其中,則.當時,,此時函數(shù)單調遞減,當時,,此時函數(shù)單調遞增,則,所以,,解得.故選:B.8、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標準方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標準方程,意在考查學生的計算能力.9、D【解析】根據(jù)命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D10、B【解析】根據(jù)題意先求出公比,進而用等比數(shù)列通項公式求得答案.【詳解】由題意,設公比為q,則,則.故選:B.11、D【解析】根據(jù)空間向量加法和減法的運算法則,以及向量的數(shù)乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.12、D【解析】由題意設出拋物線的標準方程,再利用焦點為建立,解方程即可.【詳解】由題意,設拋物線標準方程為,所以,解得,所以拋物線標準方程為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結果.【詳解】因為該組數(shù)據(jù)的極差為5,,所以,解得.因為,所以該組數(shù)據(jù)的方差為故答案為:.14、##0.5【解析】根據(jù)給定條件求出事件B和AB的概率,再利用條件概率公式計算作答.【詳解】依題意,,,所以.故答案:15、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.16、1【解析】由兩條直線垂直可知,進而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點坐標,求出函數(shù)的導數(shù),利用導函數(shù)值域斜率的關系,即可求出,(2)求出導函數(shù)的符號,判斷函數(shù)的單調性即可得到函數(shù)的極值【詳解】(1)因為函數(shù)的圖象在點P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點又函數(shù),則所以依題意得解得(2)由(1)知所以令,解得或當,或;當,所以函數(shù)的單調遞增區(qū)間是,,單調遞減區(qū)間是所以當變化時,和變化情況如下表:0極大值極小值所以,18、(1)單調增區(qū)間是,單調減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進而可得函數(shù)的單調區(qū)間和最大值;(2)對導函數(shù),分與進行討論,得函數(shù)的單調性進而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調增區(qū)間是,單調減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當時,單調遞增,得的最大值是,解得,舍去;②時,由,即,當,即時,∴時,;時,;∴的單調增區(qū)間是,單調減區(qū)間是,又在上的最大值為,∴,∴;當,即時,在單調遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導數(shù)在求解函數(shù)的單調性及求解函數(shù)的最值中的應用,還考查了函數(shù)的最值求解與分類討論的應用,解題時要認真審題,注意挖掘題設中的條件.19、(1)(2)【解析】(1)利用余弦定理可求頂角的余弦值.(2)聯(lián)立直線方程和橢圓方程,消元后利用韋達定理結合弦長公式可求的值.【小問1詳解】當為橢圓的上頂點時,,在中,由余弦定理知.【小問2詳解】設,,將直線與橢圓:聯(lián)立得:,因為直線過焦點,故恒成立,又,由弦長公式得,化簡整理得:,解得.20、(1)證明見解析(2)【解析】(1)直線方程變形后令的系數(shù)等于0消去參數(shù)即可求得定點坐標.(2)先求出圓心C到直線l距離,然后用勾股定理即可求得弦長.【小問1詳解】,聯(lián)立得:即直線l過定點(.【小問2詳解】由題意直線l的斜率,即,∴,圓,圓心,半徑,圓心C到直線l的距離,所以直線l被圓C所截得的弦長為.21、(1);(2).【解析】(1)作出圓臺的直觀圖,過點A作,垂足為H,由勾股定理可求圓臺的高;(2)結合(1),利用圓臺的體積公式可求圓臺的體積【詳解】(1)作出圓臺的直觀圖,如圖,設圓臺上下底面圓心分別為,為圓臺的一條母線,連接,,過點A作,垂足為H,則的長等于圓臺的高,因為圓臺的上下底面半徑分別為,母線長為所以,,則,可得,故圓臺高為;(2)圓的面積圓的面積為故圓臺的體積為22、(1);(2)1.【解析】(1)根據(jù)給定條件求出橢圓半焦距c,長短

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論