版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ModernPortfolioTheory
TheFactorModelsand
TheArbitragePricingTheoryChapter8ByDingzhaoyongReturn-generatingProcess
andFactorModelsReturn-generatingprocessIsastatisticalmodelthatdescribehowreturnonasecurityisproduced.ThetaskofidentifyingtheMarkowitzefficientsetcanbegreatlysimplifiedbyintroducingthisprocess.Themarketmodelisakindofthisprocess,andtherearemanyothers.Return-generatingProcess
andFactorModelsFactormodelsThesemodelsassumethatthereturnonasecurityissensitivetothemove-mentsofvariousfactorsorindices.Inattemptingtoaccuratelyestimateexpectedreturns,variances,andcovariancesforsecurities,multiple-factormodelsarepotentiallymoreusefulthanthemarketmodel.Return-generatingProcess
andFactorModelsImplicitintheconstructionofafactormodelistheassumptionthatthereturnsontwosecuritieswillbecorrelatedonlythroughcommonreactionstooneormoreofthespecifiedinthemodel.Anyaspectofasecurity’sreturnunexplainedbythefactormodelisuncorrelatedwiththeuniqueelementsofreturnsonothersecurities.Return-generatingProcess
andFactorModelsAfactormodelisapowerfultoolforportfoliomanagement.Itcansupplytheinformationneededtocalculateexpectedreturns,variances,andcovariancesforeverysecurity,whicharethenecessaryconditionsfordeterminingthecurvedMarkowitzefficientset.Itcanalsobeusedtocharacterizeaportfolio’ssensitivitytomovementinthefactors.Return-generatingProcess
andFactorModelsFactormodelssupplythenecessarylevelofabstractionincalculatingcovariances.Theproblemofcalculatingcovariancesamongsecuritiesrisesexponentiallyasthenumberofsecuritiesanalyzedincrease.Practically,abstractionisanessentialstepinidentifyingtheMarkowitzset.Return-generatingProcess
andFactorModelsFactormodelsprovideinvestmentmanagerswithaframeworktoidentifyimportantfactorsintheeconomyandthemarketplaceandtoassesstheextenttowhichdifferentsecuritiesandportfolioswillrespondtochangesinthesefactors.Aprimarygoalofsecurityanalysisistodeterminethesefactorsandthesensitivitiesofsecurityreturntomovementsinthesefactors.One-FactorModelsTheone-factormodelsrefertothereturn-generatingprocessforsecuritiesinvolvesasinglefactor.Thesefactorsmaybeoneofthefollowings:ThepredictedgrowthrateinGDPTheexpectedreturnonmarketindexThegrowthrateofindustrialproduc-tion,etc.One-FactorModelsAnexamplePage295:Figure11.1One-FactorModelsGeneralizingtheexampleAssumptionsTherandomerrortermandthefactorareuncorrelated.(Why?)Therandomerrortermsofanytwosecuritiesareuncorrelated.(Why?)One-FactorModelsExpectedreturnVarianceCovarianceOne-FactorModelsTwoimportantfeaturesofone-factormodelThetangencyportfolioiseasytoget.Thereturnsonallsecuritiesrespondtoasinglecommonfactorgreatersimplifiesthetaskofidentifyingthetangencyportfolio.Thecommonresponsivenessofsecuritiestothefactoreliminatestheneedtoestimatedirectlythecovariancesbetweenthesecurities.Thenumberofestimates:3N+2One-FactorModelsThefeatureofdiversificationistrueofanyone-factormodel.Factorrisk:Nonfactorrisk:DiversificationleadstoanaveragingoffactorriskDiversificationreducesnonfactorriskOne-FactorModelsMultiple-FactorModelsThehealthoftheeconomyeffectsmostfirms,buttheeconomyisnotasimple,monolithicentity.SeveralcommoninfluenceswithpervasiveeffectsmightbeidentifiedThegrowthrateofGDPThelevelofinterestrateTheinflationrateThelevelofoilpriceMultiple-FactorModelsTwo-FactorModelsAssumethatthereturn-generatingprocesscontainstwofactors.Multiple-FactorModelsThesecondequationprovidesatwo-factormodelofacompany’sstock,whosereturnsareaffectedbyexpectationsconcerningboththegrowthrateinGDPandtherateofinflation.Page301:Figure11.2Tothisscatterofpointsisfitatwo-dimensionalplanebyusingthestatisticaltechniqueofmultiple-regressionanalysis.Multiple-FactorModelsFourparametersneedtobeestimatedforeachsecuritywiththetwo-factormodel:ai,
bi1,bi2,andthestandarddeviationoftherandomerrorterm.Foreachofthefactors,twoparametersneedtobeestimated.Theseparametersaretheexpectedvalueofeachfactorandthevarianceofeachfactor.Finally,thecovariancebetweenfactors.Multiple-FactorModelsExpectedreturnVarianceCovarianceMultiple-FactorModelsThetangencyportfolioTheinvestorcanproceedtouseanoptimizertoderivethecurveefficientset.DiversificationDiversificationleadstoanaveragingoffactorrisk.Diversificationcansubstantiallyreducenonfactorrisk.Forawell-diversifiedportfolio,nonfactorriskwillbeinsignificant.Multiple-FactorModelsMultiple-FactorModelsSector-FactorModelsSector-factormodelsarebasedontheacknowledgethatthepricesofsecuritiesinthesameindustryoreconomicsectoroftenmovetogetherinresponsetochangesinprospectsforthatsector.Tocreateasector-factormodel,eachsecuritymustbeassignedtoasector.Multiple-FactorModelsAtwo-sector-factormodelTherearetwosectorsandeachsecuritymustbeassignedtooneofthem.Boththenumberofsectorsandwhateachsectorconsistsofisanopenmatterthatislefttotheinvestortodecide.Thereturn-generatingprocessforsecuritiesisofthesamegeneralformasthetwo-factormodel.Multiple-FactorModelsDifferingfromthetwo-factormodel,withtwo-sector-factormodel,F1andF2nowdenotesector-factors1and2,respectively.Anyparticularsecuritybelongstoeithersector-factor1orsector-factor2butnotboth.Multiple-FactorModelsIngeneral,whereasfourparametersneedtobeestimatedforeachsecuritywithatwo-factormodel(ai1,bi1,bi2
,
ei,),onlythreeparametersneedtobeestimatedwithatwo-sector-factormodel.(ai1,
ei,andeitherbi1orbi2
).Multiple-factormodelsEstimatingFactorModelsTherearemanymethodsofestimatingfactormodels.Theremethodscanbegroupedintothreemajorapproaches:Time-seriesapproachesCross-sectionalapproachesFactor-analyticapproachesFactorModelsandEquilibriumAfactormodelisnotanequilibriummodelofassetpricing.Bothequationshowthattheexpectedreturnonthestockisrelatedtoacharacteristicofthestock,bior
i.Thelargerthesizeofthecharacteristic,thelargertheasset’sreturn.FactorModelsandEquilibriumThekeydifferenceisaiandrf.TheonlycharacteristicofthestockthatdetermineitsexpectedreturnaccordingtotheCAPMis
ii,asrffdenotestherisk-freerateandisthesameforallsecurities.Withthefactormodel,thereisasecondcharacteristicofthestockthatneedstobeestimatedtodeterminethestock’sexpectedreturn,aii.FactorModelsandEquilibriumAsthesizeofaidiffersfromonestocktoanother,itpresentsthefactormodelfrombeinganequilibriummodel.Twostockswiththesamevalueofbicanhavedramaticallydifferentexpectedreturnsaccordingtoafactormodel.Twostockswiththesamevalueof
iwillhavethesameexpectedreturnaccordingtotheequilibrium-basedCAPM.FactorModelsandEquilibriumTherelationshipbetweentheparametersaiandbioftheone-factormodelandthesingleparameter
ioftheCAPM.IftheexpectedreturnsaredeterminedaccordingtotheCAPMandactualreturnsaregeneratedbytheone-factormarketmodel,thentheaboveequationsmustbetrue.ArbitragePricingTheoryAPTisatheorywhichdescribeshowasecurityispricedjustlikeCAPM.Movingawayfromconstructionofmean-varianceefficientportfolio,APTinsteadcalculatesrelationsamongexpectedratesofreturnthatwouldruleoutrisklessprofitsbyanyinvestorinwell-functioningcapitalmarkets.ArbitragePricingTheoryAPTmakesfewassumptions.Oneprimaryassumptionisthateachinvestor,whengiventheopportunitytoincreasethereturnofhisorherportfoliowithoutincreasingitsrisk,willproceedtodoso.Thereexistsanarbitrageopportunityandtheinvestorcanuseanarbitrageportfolios.ArbitrageOpportunitiesArbitrageistheearningofrisklessprofitbytakingadvantageofdifferentialpricingforthesamephysicalassetorsecurity.Ittypicallyentailsthesaleofasecurityatarelativelyhighpriceandthesimultaneouspurchaseofthesamesecurity(oritsfunctionalequivalent)atarelativelylowprice.ArbitrageOpportunitiesArbitrageactivityisacriticalelementofmodern,efficientsecuritymarkets.Ittakesrelativelyfewofthisactiveinvestorstoexploitarbitragesituationsand,bytheirbuyingandsellingactions,eliminatetheseprofitopportunities.SomeinvestorshavegreaterresourcesandinclinationtoengageIarbitragethanothers.ArbitrageOpportunitiesZero-investmentportfolioAportfolioofzeronetvalue,establishedbybuyingandshortingcomponentsecurities.Arisklessarbitrageopportunityariseswhenaninvestorcanconstructazero-investmentportfoliothatwillyieldasureprofit.ArbitrageOpportunitiesToconstructazero-investmentportfolio,onehastobeabletosellshortatleastoneassetandusetheproceedstopurchaseonormoreassets.Evenasmallinvestor,usingborrowedmoneyinthiscase,cantakealargepositioninsuchaportfolio.Therearemanyarbitragetactics.ArbitrageOpportunitiesAnexample:Fourstocksandfourpossiblescenariostherateofreturninfourscenarios181inthetextbookTheexpectedreturns,standarddeviationsandcorrelationsdonotrevealanyabnormalitytothenakedeye.ArbitrageOpportunitiesThecriticalpropertyofanarbitrageportfolioisthatanyinvestor,regardlessofriskaversionorwealth,willwanttotakeaninfinitepositioninitsothatprofitswillbedriventoaninfinitelevel.Theselargepositionswillforcesomepricesupanddownuntilarbitrageopportunitiesvanishes.FactorModelsand
PrincipleofArbitrageAlmostarbitrageopportunitiescaninvolvesimilarsecuritiesorportfolios.Thatsimilaritycanbedefinedinmanyways.Onewayistheexposuretopervasivefactorsthataffectsecurityprices.AnexamplePage324FactorModelsand
PrincipleofArbitrageAfactormodelimpliesthatsecuritiesorportfolioswithequal-factorsensitivitieswillbehaveinthesamewayexceptfornonfactorrisk.APTstartsoutbymakingtheassumptionthatsecurityreturnsarerelatedtoanunknownnumberofunknownfactors.Securitieswiththesamefactorsensitivitiesshouldofferthesameexpectedreturns.ArbitragePortfoliosAnarbitrageportfoliomustsatisfy:AnetmarketvalueofzeroNosensitivitytoanyfactorApositiveexpectedreturnArbitragePortfoliosThearbitrageportfolioisattractivetoanyinvestorwhodesiresahigherreturnandisnotconcernedwithnonfactorrisk.Itrequiresnoadditionaldollarinvestment,ithasnofactorrisk,andithasapositiveexpectedreturn.One-FactorModelandAPTPricingeffectsonarbitrageportfolioThebuying-and-sellingactivitywillcontinueuntilallarbitragepossibilitiesaresignificantreducedoreliminatedTherewillexistanapproximatelylinearrelationshipbetweenexpectedreturnsandsensitivitiesofthefollowingsort:One-FactorModelandAPTTheequationistheassetpricingequationoftheAPTwhenreturnsaregeneratedbyonefactorThelinearequationmeansthatinequili-briumtherewillbealinearrelationshipbetweenexpectedreturnsandsensitivities.Theexpectedreturnonanysecurityis,inequilibrium,alinearfunctionofthesecurity’ssensitivitytothefactor,biOne-FactorModelandAPTAnysecuritythathasafactorsensitivityandexpectedreturnsuchthatitliesoffthelinewillbemispricedaccordingtotheAPTandwillpresentinvestorswiththeopportunityofformingarbitrageportfolios.Page327:Figure12.1One-FactorModelandAPTInterpretingtheAPTpricingequationRiskfreeasset,rfPurefactorportfolio,p*Two-FactorModelAndAPTThetwo-factormodelArbitrageportfoliosAnetmarketvalueofzeroNosensitivitytoanyfactorApositiveexpectedreturnTwo-FactorModelAndAPTPricingeffectsTwo-FactorModelAndAPT
1istheexpectedreturnonthepo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年珠寶首飾代銷采購合同范本3篇
- 2024年適用房產(chǎn)顧問服務(wù)協(xié)議版
- 二零二五年GRC裝飾構(gòu)件行業(yè)培訓(xùn)與專業(yè)人才培養(yǎng)合同2篇
- 2025年度IT企業(yè)員工隱私保護(hù)及保密協(xié)議3篇
- 二零二五年度醫(yī)療器械采購合同及售后服務(wù)協(xié)議3篇
- 確定位置第2課時(shí)(說課稿)-2024-2025學(xué)年四年級(jí)上冊數(shù)學(xué)北師大版
- 第一單元項(xiàng)目1《設(shè)計(jì)互聯(lián)網(wǎng)簡歷》說課稿 2024-2025學(xué)年安徽版(2024)初中信息技術(shù)七年級(jí)上冊
- 2024年麻將館股權(quán)轉(zhuǎn)讓合同
- 【2021屆備考】2020全國名校數(shù)學(xué)試題分類解析匯編(12月第一期):C6三角函數(shù)-綜合應(yīng)用
- 容積和容積單位 說課稿-2023-2024學(xué)年五年級(jí)下冊數(shù)學(xué)人教版
- 快樂寒假安全先行寒假安全教育主題班會(huì)課件
- 燃燒仿真.燃燒仿真軟件:OpenFOAM:湍流燃燒仿真原理
- 2024-2025學(xué)年七年級(jí)語文上冊第一學(xué)期 期末綜合模擬測試卷(人教版)
- 浙江省臺(tái)金七校2023-2024學(xué)年高一下學(xué)期4月期中考試英語試題
- 藍(lán)色卡通風(fēng)胃腸減壓護(hù)理
- 小學(xué)單位換算-體積
- 叉車自行檢查記錄表
- 2024新安全生產(chǎn)法知識(shí)考試題庫及答案大全
- 專題5 書面表達(dá)-2023-2024學(xué)年譯林版五年級(jí)上冊英語期末專題復(fù)習(xí)
- 2024年中國科學(xué)技術(shù)大學(xué)創(chuàng)新班物理試題答案詳解
- 江西省萍鄉(xiāng)市2022-2023學(xué)年高一年級(jí)上冊期末考試數(shù)學(xué)試題
評論
0/150
提交評論