版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省連云港市海慶中學(xué)2023年數(shù)學(xué)高二上期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)在上為增函數(shù),則a的取值范圍為()A. B.C. D.2.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件3.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.4.已知等比數(shù)列滿足,則()A.168 B.210C.672 D.10505.設(shè),命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且6.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.7.已知,若對(duì)于且都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點(diǎn),,則為()A. B.C. D.9.已知橢圓的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為P,直線與橢圓相交于A、B兩點(diǎn).若,點(diǎn)P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.10.已知是兩個(gè)數(shù)1,9的等比中項(xiàng),則圓錐曲線的離心率為()A.或 B.或C. D.11.雙曲線:(,)的左、右焦點(diǎn)分別為、,點(diǎn)在雙曲線上,,,則的離心率為()A. B.2C. D.12.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動(dòng)點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為_______14.?dāng)?shù)據(jù)6,8,9,10,7的方差為______15.正三棱柱的底面邊長為2,側(cè)棱長為,則與側(cè)面所成角的正弦值為______16.已知正項(xiàng)數(shù)列的前n項(xiàng)和為,且,則__________,滿足不等式的最大整數(shù)為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,的對(duì)邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長18.(12分)冬奧會(huì)的全稱是冬季奧林匹克運(yùn)動(dòng)會(huì),是世界規(guī)模最大的冬季綜合性運(yùn)動(dòng)會(huì),每四年舉辦一屆.第24屆冬奧會(huì)將于2022年在中國北京和張家口舉行.為了弘揚(yáng)奧林匹克精神,增強(qiáng)學(xué)生的冬奧會(huì)知識(shí),廣安市某中學(xué)校從全校隨機(jī)抽取50名學(xué)生參加冬奧會(huì)知識(shí)競賽,并根據(jù)這50名學(xué)生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學(xué)生競賽成績的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))19.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值20.(12分)(1)敘述正弦定理;(2)在△中,應(yīng)用正弦定理判斷“”是“”成立的什么條件,并加以證明.21.(12分)已知橢圓的左,右焦點(diǎn)為,橢圓的離心率為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)點(diǎn)T為橢圓C上的點(diǎn),若點(diǎn)T在第一象限,且與x軸垂直,過T作兩條斜率互為相反數(shù)的直線分別與橢圓C交于點(diǎn)M,N,探究直線的斜率是否為定值?若為定值,請求之;若不為定值,請說明理由22.(10分)如圖,在三棱柱中,點(diǎn)在底面內(nèi)的射影恰好是點(diǎn),是的中點(diǎn),且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出函數(shù)的導(dǎo)數(shù),要使函數(shù)在上為增函數(shù),要保證導(dǎo)數(shù)在該區(qū)間上恒正即可,由此得到不等式,解得答案.詳解】由題意可知,若在遞增,則在恒成立,即有,則,故選:C.2、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當(dāng)時(shí),,但的符號(hào)不確定,所以充分性不成立;反之當(dāng)時(shí),也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.3、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因?yàn)橹本€的傾斜角為45°,所以直線的斜率為,因?yàn)橹本€在軸上的截距是,所以所求的直線方程為,即,故選:B4、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù),即可求得結(jié)果.【詳解】等比數(shù)列滿足,設(shè)等比數(shù)列的公比為q,所以,解得,故,故選:C5、C【解析】根據(jù)否命題的定義直接可得.【詳解】根據(jù)否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.6、D【解析】如圖作出可行域,知可行域的頂點(diǎn)是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時(shí),的最小值為-8,故選D.7、D【解析】根據(jù)題意轉(zhuǎn)化為對(duì)于且時(shí),都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時(shí),恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對(duì)于且都有成立,不妨設(shè),可得恒成立,即對(duì)于且時(shí),都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當(dāng)時(shí),恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實(shí)數(shù)取值范圍為.故選:D8、B【解析】根據(jù)空間向量運(yùn)算求得正確答案.【詳解】.故選:B9、D【解析】設(shè)橢圓的左焦點(diǎn)為,由題可得,由點(diǎn)P到直線l的距離不小于可得,進(jìn)而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點(diǎn)為,P為短軸的上端點(diǎn),連接,如圖所示:由橢圓的對(duì)稱性可知,A,B關(guān)于原點(diǎn)對(duì)稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點(diǎn)P到直線l距離:,解得:,即,∴,∴.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.10、A【解析】根據(jù)題意可知,當(dāng)時(shí),根據(jù)橢圓離心率公式,即可求出結(jié)果;當(dāng)時(shí),根據(jù)雙曲線離心率公式,即可求出結(jié)果.【詳解】因?yàn)槭莾蓚€(gè)數(shù)1,9的等比中項(xiàng),所以,所以,當(dāng)時(shí),圓錐曲線,其離心率為;當(dāng)時(shí),圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.11、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.12、A【解析】由題可得動(dòng)點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計(jì)算函數(shù)最小值得到答案.【詳解】當(dāng)時(shí),不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當(dāng)時(shí),,當(dāng)時(shí),,所以,所以故答案為:14、2【解析】首先求出數(shù)據(jù)的平均值,再應(yīng)用方差公式求它們的方差.【詳解】由題設(shè),平均值為,∴方差.故答案為:2.15、【解析】作圖,考慮底面是正三角形,按照線面夾角的定義構(gòu)造直角三角形即可.【詳解】依題意,作圖如下,取的中點(diǎn)G,連結(jié),∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,與平面的夾角=,在中,,故答案為:.16、①.##②.【解析】由得到,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,從而求出,再根據(jù)求出,令,利用裂項(xiàng)相消法求出,即可求出的取值范圍,從而得解;【詳解】解:由,令,得,,解得;當(dāng)時(shí),,即因此,數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,,即所以,令,所以,所以,則最大整數(shù)為;故答案為:;;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡整理,即可求解(2)由的面積為4,結(jié)合(1)中結(jié)論,可得,結(jié)合余弦定理,可得,從而可求的周長【詳解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面積為,∴.由余弦定理得,∴.故的周長為.【點(diǎn)睛】本題考查正弦定理應(yīng)用,余弦定理解三角形,三角形面積公式,考查計(jì)算化簡的能力,屬基礎(chǔ)題18、(1)(2)眾數(shù);中位數(shù)【解析】(1)根據(jù)頻率分布直方圖矩形面積和為1列式即可;(2)根據(jù)眾數(shù)即最高矩形中間值,中位數(shù)左右兩邊矩形面積各為0.5列式即可.【小問1詳解】由,得【小問2詳解】50名學(xué)生競賽成績的眾數(shù)為設(shè)中位數(shù)為,則解得所以這50名學(xué)生競賽成績的中位數(shù)為76.419、(1)證明見解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結(jié)論;(2)如圖,過點(diǎn)作,交直線于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過點(diǎn)作,交直線于點(diǎn),連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線與平面所成的角的正弦值是【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線面垂直的判定和線面角的求法,解題的關(guān)鍵是通過過點(diǎn)作,交直線于點(diǎn),連接,然后結(jié)合條件可證得是與平面所成的角,從而在三角形中求解即可,考查推理能力和計(jì)算能力,屬于中檔題20、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達(dá)正弦定理(2)利用“大角對(duì)大邊”的性質(zhì),并根據(jù)正弦定理進(jìn)行邊角互化即可【詳解】(1)正弦定理:在任意一個(gè)三角形中,各邊和它所對(duì)角的正弦值之比相等且等于這個(gè)三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件21、(1);(2)直線的斜率為定值,且定值為.【解析】(1)根據(jù)橢圓的離心率及所過的點(diǎn)求出橢圓參數(shù)a、b,即可得橢圓標(biāo)準(zhǔn)方程.(2)由題設(shè)得,法一:設(shè)為,聯(lián)立橢圓方程應(yīng)用韋達(dá)定理求M坐標(biāo),根據(jù)與斜率關(guān)系求N的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率;法二:設(shè)為,,聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于參數(shù)m、k的方程,即可判斷是否為定值.【小問1詳解】由題意,則,又,所以橢圓C方程為,代入有,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由題設(shè)易知:,法一:設(shè)直線為,由,消去y,整理得,因?yàn)榉匠逃幸粋€(gè)根為,所以M的橫坐標(biāo)為,縱坐標(biāo),故M為,用代替k,得N為,所以,故直線的斜率為定值法二:由已知直線的斜率存在,可設(shè)直線為,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,則直線過點(diǎn)T,不合題意,所以.即,故直線的斜率為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,設(shè)直線方程并聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于直線斜率的方M、N程,或求出的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率.22、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點(diǎn),為x、y、z軸正方向建立空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年五年級(jí)數(shù)學(xué)下冊 五 分?jǐn)?shù)除法練習(xí)五說課稿 北師大版001
- Unit 3 Amazingt animals Part A Letters and sounds(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級(jí)上冊
- Unit 3 Weather B learn(說課稿)-2023-2024學(xué)年人教PEP版英語四年級(jí)下冊
- 2023八年級(jí)數(shù)學(xué)上冊 第15章 數(shù)據(jù)的收集與表示15.1數(shù)據(jù)的收集 1數(shù)據(jù)有用嗎說課稿 (新版)華東師大版
- 2023八年級(jí)道德與法治上冊 第二單元 遵守社會(huì)規(guī)則 第三課 社會(huì)生活離不開規(guī)則第2課時(shí) 遵守規(guī)則說課稿 新人教版
- 2024八年級(jí)英語下冊 Unit 1 Spring Is ComingLesson 4 The Spring City說課稿(新版)冀教版
- 17 要是你在野外迷了路(說課稿)-2023-2024學(xué)年統(tǒng)編版語文二年級(jí)下冊
- 2025回遷房買賣合同模板
- 2025勞動(dòng)合同書的范本
- Unit 8 What's his job單元整體(說課稿)-2024-2025學(xué)年接力版(2024)英語三年級(jí)上冊
- 大樹扶正施工方案
- 《造血干細(xì)胞移植護(hù)理》課件
- 課題申報(bào)參考:全齡友好視角下的社區(qū)語言景觀評(píng)估及空間優(yōu)化研究
- 中央2025年公安部部分直屬事業(yè)單位招聘84人筆試歷年參考題庫附帶答案詳解
- 五年級(jí)下冊語文四大名著常考知識(shí)點(diǎn)
- 光伏發(fā)電項(xiàng)目施工組織設(shè)計(jì)方案及技術(shù)措施
- 2025年1月日歷表(含農(nóng)歷-周數(shù)-方便記事備忘)
- 2024年同等學(xué)力人員申請碩士學(xué)位英語試卷與參考答案
- 臨床用血管理培訓(xùn)
- 介入手術(shù)室護(hù)理風(fēng)險(xiǎn)
- 2024年江蘇省公務(wù)員錄用考試《行測》題(A類)
評(píng)論
0/150
提交評(píng)論