湖北省武漢市黃陂區(qū)漢口北高中2023-2024學(xué)年高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第1頁
湖北省武漢市黃陂區(qū)漢口北高中2023-2024學(xué)年高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第2頁
湖北省武漢市黃陂區(qū)漢口北高中2023-2024學(xué)年高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第3頁
湖北省武漢市黃陂區(qū)漢口北高中2023-2024學(xué)年高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第4頁
湖北省武漢市黃陂區(qū)漢口北高中2023-2024學(xué)年高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省武漢市黃陂區(qū)漢口北高中2023-2024學(xué)年高二上數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測(cè)量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測(cè)量基點(diǎn)與,現(xiàn)測(cè)得,,,在點(diǎn)測(cè)得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.2.直線與直線交于點(diǎn)Q,m是實(shí)數(shù),O為坐標(biāo)原點(diǎn),則的最大值是()A.2 B.C. D.43.在如圖所示的棱長(zhǎng)為1的正方體中,點(diǎn)P在側(cè)面所在的平面上運(yùn)動(dòng),則下列四個(gè)命題中真命題的個(gè)數(shù)是()①若點(diǎn)P總滿足,則動(dòng)點(diǎn)P的軌跡是一條直線②若點(diǎn)P到點(diǎn)A的距離為,則動(dòng)點(diǎn)P的軌跡是一個(gè)周長(zhǎng)為的圓③若點(diǎn)P到直線AB的距離與到點(diǎn)C的距離之和為1,則動(dòng)點(diǎn)P的軌跡是橢圓④若點(diǎn)P到平面的距離與到直線CD的距離相等,則動(dòng)點(diǎn)P的軌跡是拋物線A.1 B.2C.3 D.44.小明騎車上學(xué),開始時(shí)勻速行駛,途中因交通堵塞停留了一段時(shí)間,后為了趕時(shí)間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.5.阿波羅尼斯約公元前年證明過這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)且的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn)A,B間的距離為2,動(dòng)點(diǎn)P與A,B距離之比滿足:,當(dāng)P、A、B三點(diǎn)不共線時(shí),面積的最大值是()A. B.2C. D.6.已知數(shù)列滿足,,則的最小值為()A. B.C. D.7.“”是“曲線為焦點(diǎn)在軸上的橢圓”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.某學(xué)生2021年共參加10次數(shù)學(xué)競(jìng)賽模擬考試,成績(jī)分別記為,,,…,,為研究該生成績(jī)的起伏變化程度,選用一下哪個(gè)數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標(biāo)準(zhǔn)差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);9.如圖,函數(shù)的圖象在P點(diǎn)處的切線方程是,若點(diǎn)的橫坐標(biāo)是5,則()A. B.1C.2 D.010.已知點(diǎn)F為拋物線C:的焦點(diǎn),點(diǎn),若點(diǎn)Р為拋物線C上的動(dòng)點(diǎn),當(dāng)取得最大值時(shí),點(diǎn)P恰好在以F,為焦點(diǎn)的橢圓上,則該橢圓的離心率為()A. B.C. D.11.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國(guó)古代聞名中外的“中國(guó)剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1612.直線的傾斜角是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內(nèi)角A,B,C的對(duì)邊為a,b,c,已知,且,則c的最小值為__________.14.已知雙曲線的左、右焦點(diǎn)分別為,,O為坐標(biāo)原點(diǎn),點(diǎn)M是雙曲線左支上的一點(diǎn),若,,則雙曲線的離心率是____________15.已知函數(shù),則曲線在點(diǎn)處的切線方程為______.16.已知實(shí)數(shù),,,滿足,,,則的最大值是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時(shí)的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時(shí)從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時(shí)追上.(1)求漁船甲的速度;(2)求的值.18.(12分)如圖,在三棱錐中,平面,,,為的中點(diǎn).(1)證明:平面;(2)求平面與平面所成二面角的正弦值.19.(12分)已知函數(shù).若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C方程22.(10分)等差數(shù)列的前n項(xiàng)和為,已知(1)求的通項(xiàng)公式;(2)若,求n的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D2、B【解析】求出兩直線的交點(diǎn)坐標(biāo),結(jié)合兩點(diǎn)間的距離公式得到,進(jìn)而可以求出結(jié)果.【詳解】因?yàn)榕c的交點(diǎn)坐標(biāo)為所以,當(dāng)時(shí),,所以的最大值是,故選:B.3、C【解析】根據(jù)線面關(guān)系、距離關(guān)系可分別對(duì)每一個(gè)命題判斷.【詳解】若點(diǎn)P總滿足,又,,,可得對(duì)角面,因此點(diǎn)P的軌跡是直線,故①正確若點(diǎn)P到點(diǎn)A的距離為,則動(dòng)點(diǎn)P的軌跡是以點(diǎn)B為圓心,以1為半徑的圓(在平面內(nèi)),因此圓的周長(zhǎng)為,故②正確點(diǎn)P到直線AB的距離PB與到點(diǎn)C的距離PC之和為1,又,則動(dòng)點(diǎn)P的軌跡是線段BC,因此③不正確點(diǎn)P到平面的距離(即到直線的距離)與到直線CD的距離(即到點(diǎn)C的距離)相等,則動(dòng)點(diǎn)P的軌跡是以線段BC的中點(diǎn)為頂點(diǎn),直線BC為對(duì)稱軸的拋物線(在平面內(nèi)),因此④正確故有①②④三個(gè)故選:C4、C【解析】先研究四個(gè)選項(xiàng)中圖象的特征,再對(duì)照小明上學(xué)路上的運(yùn)動(dòng)特征,兩者對(duì)應(yīng)即可選出正確選項(xiàng).【詳解】考查四個(gè)選項(xiàng),橫坐標(biāo)表示時(shí)間,縱坐標(biāo)表示的是離開學(xué)校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學(xué),開始時(shí)勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時(shí)間,故此時(shí)有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時(shí)間加快速度行駛,此一段時(shí)間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點(diǎn)睛】本題考查函數(shù)的表示方法,關(guān)鍵是理解坐標(biāo)系的度量與小明上學(xué)的運(yùn)動(dòng)特征,屬于基礎(chǔ)題.5、C【解析】根據(jù)給定條件建立平面直角坐標(biāo)系,求出點(diǎn)P的軌跡方程,探求點(diǎn)P與直線AB的最大距離即可計(jì)算作答.【詳解】依題意,以線段AB的中點(diǎn)為原點(diǎn),直線AB為x軸建立平面直角坐標(biāo)系,如圖,則,,設(shè),因,則,化簡(jiǎn)整理得:,因此,點(diǎn)P的軌跡是以點(diǎn)為圓心,為半徑的圓,點(diǎn)P不在x軸上時(shí),與點(diǎn)A,B可構(gòu)成三角形,當(dāng)點(diǎn)P到直線(軸)的距離最大時(shí),的面積最大,顯然,點(diǎn)P到軸的最大距離為,此時(shí),,所以面積的最大值是故選:C6、C【解析】采用疊加法求出,由可得,結(jié)合對(duì)勾函數(shù)性質(zhì)分析在或6取到最小值,代值運(yùn)算即可求解.【詳解】因?yàn)?,所以,,,,式相加可得,所以,,?dāng)且僅當(dāng)取到,但,,所以時(shí),當(dāng)時(shí),,,所以的最小值為.故選:C7、C【解析】∵“”?“方程表示焦點(diǎn)在軸上的橢圓”,“方程表示焦點(diǎn)在軸上的橢圓”?“”,∴“”是“方程表示焦點(diǎn)在軸上的橢圓”的充要條件,故選C.8、B【解析】根據(jù)平均數(shù)、標(biāo)準(zhǔn)差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢(shì),標(biāo)準(zhǔn)差描述數(shù)據(jù)的波動(dòng)大小估計(jì)數(shù)據(jù)的穩(wěn)定程度.故選:B.9、C【解析】函數(shù)的圖象在點(diǎn)P處的切線方程是,所以,在P處的導(dǎo)數(shù)值為切線的斜率,2,故選C考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義點(diǎn)評(píng):簡(jiǎn)單題,切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值10、D【解析】過點(diǎn)P引拋物線準(zhǔn)線的垂線,交準(zhǔn)線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當(dāng)最小,即直線與拋物線相切時(shí)滿足題意,進(jìn)而解出此時(shí)P的坐標(biāo),解得答案即可.【詳解】如圖,易知點(diǎn)在拋物線C的準(zhǔn)線上,作PD垂直于準(zhǔn)線,且與準(zhǔn)線交于點(diǎn)D,記,則.由拋物線定義可知,.由圖可知,當(dāng)取得最大值時(shí),最小,此時(shí)直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡(jiǎn)得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長(zhǎng)軸長(zhǎng),半焦距,所以橢圓的離心率.故選:D.11、C【解析】根據(jù)“中國(guó)剩余定理”,進(jìn)而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個(gè)判斷框,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)為2.輸出的i值為13.故選:C.12、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關(guān)系,求得,即可求得c的最小值.【詳解】,即,又,當(dāng)最大時(shí),即,最小,且為由正弦定理得:,當(dāng)時(shí),c的最小值為故答案為:【點(diǎn)睛】方法點(diǎn)睛:在解三角形題目中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到.14、5【解析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【詳解】設(shè)雙曲線的焦距為,則,因?yàn)?,所以,因?yàn)椋环猎O(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.15、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點(diǎn)處的切線方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,重點(diǎn)考查計(jì)算能力,屬于基礎(chǔ)題型.16、10【解析】采用數(shù)形結(jié)合法,將所求問題轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,結(jié)合梯形中位線性質(zhì)和三角形三邊關(guān)系可求得答案.【詳解】由,,,可知,點(diǎn)在圓上,由,即為等腰直角三角形,結(jié)合點(diǎn)到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,作于于,中點(diǎn)為,中點(diǎn)為,由梯形中位線性質(zhì)可得,,作于,于,連接,則,當(dāng)且僅當(dāng)與重合,三點(diǎn)共線時(shí),有最大值,由點(diǎn)到直線距離公式可得,由幾何性質(zhì)可得,,此時(shí),故的最大值為.故答案為:10.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)14海里小時(shí);(2).【解析】(1)由題意知,,,.在△中,利用余弦定理求出,進(jìn)而求出漁船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小問1詳解】(1)依題意,,,,.在△中,由余弦定理,得.解得.故漁船甲的速度為海里小時(shí).即漁船甲的速度為14海里小時(shí).【小問2詳解】在△中,因?yàn)?,,,,由正弦定理,得,?值為.18、(1)證明見解析(2)【解析】(1)根據(jù)勾股定理先證明,然后證明,進(jìn)而通過線面垂直的判定定理證明問題;(2)建立空間直角坐標(biāo)系,進(jìn)而求出兩個(gè)平面的法向量,然后通過空間向量的夾角公式求得答案.【小問1詳解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小問2詳解】以點(diǎn)為坐標(biāo)原點(diǎn),向量,的方向分別為,軸的正方向建立空間直角坐標(biāo)系,則,,,,,設(shè)平面的法向量為,由,,有取,可得平面的一個(gè)法向量為.設(shè)平面的一個(gè)法向量為,由,,有取,可得平面的一個(gè)法向量為,所以,故平面與平面的夾角的正弦值為.19、.【解析】求得,根據(jù)其在上有兩個(gè)零點(diǎn),結(jié)合零點(diǎn)存在性定理,對(duì)參數(shù)進(jìn)行分類討論,即可求得參數(shù)的取值范圍.【詳解】因?yàn)?,所以,令,由題意可知在上有兩個(gè)不同零點(diǎn).又,若,則,故在上為增函數(shù),這與在上有兩個(gè)不同零點(diǎn)矛盾,故.當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),故,因?yàn)樵谏嫌袃蓚€(gè)不同零點(diǎn),故,即,即,取,,故在有一個(gè)零點(diǎn),取,,令,,則,故在為減函數(shù),因?yàn)?,故,故,故在有一個(gè)零點(diǎn),故在上有兩個(gè)零點(diǎn),故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)由函數(shù)的極值點(diǎn)個(gè)數(shù)求參數(shù)的范圍,涉及零點(diǎn)存在定理,以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,屬綜合困難題.20、(1)(2)【解析】(1)根據(jù)已知條件求得等差數(shù)列的首項(xiàng)和公差,由此求得.(2)利用裂項(xiàng)求和法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.21、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l的斜率,由點(diǎn)斜式化簡(jiǎn)即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長(zhǎng),圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因?yàn)橹本€l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論