![吉林省長春市九臺(tái)市師范中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view/ccdfc7cba72556e20e99ca164643a164/ccdfc7cba72556e20e99ca164643a1641.gif)
![吉林省長春市九臺(tái)市師范中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view/ccdfc7cba72556e20e99ca164643a164/ccdfc7cba72556e20e99ca164643a1642.gif)
![吉林省長春市九臺(tái)市師范中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view/ccdfc7cba72556e20e99ca164643a164/ccdfc7cba72556e20e99ca164643a1643.gif)
![吉林省長春市九臺(tái)市師范中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view/ccdfc7cba72556e20e99ca164643a164/ccdfc7cba72556e20e99ca164643a1644.gif)
![吉林省長春市九臺(tái)市師范中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view/ccdfc7cba72556e20e99ca164643a164/ccdfc7cba72556e20e99ca164643a1645.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省長春市九臺(tái)市師范中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的最小值是()A.3 B.4C.5 D.62.已知隨機(jī)變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.763.已知橢圓:與雙曲線:有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則的最大值為()A. B.C. D.4.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.15.若球的半徑為,一個(gè)截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.6.焦點(diǎn)坐標(biāo)為(1,0)拋物線的標(biāo)準(zhǔn)方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y7.等比數(shù)列滿足,,則()A.11 B.C.9 D.8.若存在,使得不等式成立,則實(shí)數(shù)k的取值范圍為()A. B.C. D.9.命題“對(duì)任意,都有”的否定是()A.對(duì)任意,都有 B.存在,使得C.對(duì)任意,都有 D.存在,使得10.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.11.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績?cè)趦?nèi)的選手可獲獎(jiǎng),則這名選手中獲獎(jiǎng)的人數(shù)為A. B.C. D.12.過拋物線C:y2=4x的焦點(diǎn)F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓,A,B是橢圓C上的兩個(gè)不同的點(diǎn),設(shè),若,則直線AB的方程為______14.已知,,且與的夾角為鈍角,則x的取值范圍是___.15.已知,則曲線在點(diǎn)處的切線方程是______.16.寫出一個(gè)同時(shí)具有性質(zhì)①②的函數(shù)___________.(不是常值函數(shù)),①為偶函數(shù);②.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)解不等式;(2)若不等式對(duì)恒成立,求實(shí)數(shù)m的取值范圍18.(12分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點(diǎn),求證PC⊥平面AEF19.(12分)設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足(1)若,且為真,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍20.(12分)已知函數(shù)(1)求單調(diào)增區(qū)間;(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點(diǎn),且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程22.(10分)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在拋物線C:上,點(diǎn)F為拋物線C的焦點(diǎn),記P到直線的距離為d,且.(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線l與拋物線C相切,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因?yàn)?,所以,所以在上單調(diào)遞增,所以,故選:D2、A【解析】根據(jù)給定條件利用正態(tài)分布的對(duì)稱性計(jì)算作答.【詳解】因隨機(jī)變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對(duì)稱性得:,所以的值為0.24.故選:A3、B【解析】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),結(jié)合橢圓與雙曲線的定義得到,進(jìn)而結(jié)合余弦定理得到,即,令然后結(jié)合三角函數(shù)即可求出結(jié)果.【詳解】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當(dāng)時(shí),有最大值,最大值為,故選:B.【點(diǎn)睛】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)4、A【解析】分截距都為零和都不為零討論即可.【詳解】當(dāng)截距都為零時(shí),直線過原點(diǎn),;當(dāng)截距不為零時(shí),,.綜上:或.故選:A.5、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點(diǎn)睛】解答本題的關(guān)鍵點(diǎn)在于,球心與截面圓圓心的連線垂直于截面6、B【解析】由題意設(shè)拋物線方程為y2=2px(p>0),結(jié)合焦點(diǎn)坐標(biāo)求得p,則答案可求【詳解】由題意可設(shè)拋物線方程為y2=2px(p>0),由焦點(diǎn)坐標(biāo)為(1,0),得,即p=2∴拋物的標(biāo)準(zhǔn)方程是y2=4x故選B【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的幾何性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題7、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B8、C【解析】根據(jù)題意和一元二次不等式能成立可得對(duì)于,成立,令,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,即可求出.【詳解】存在,不等式成立,則,能成立,即對(duì)于,成立,令,,則,令,所以當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,又,所以f(x)>-3,所以.故選:C9、B【解析】根據(jù)全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以命題“對(duì)任意,都有”的否定是“存在,使得”故選:B.10、B【解析】求出函數(shù)的定義域,解不等式可得出函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,由,可?因此,函數(shù)的單調(diào)遞增區(qū)間為.故選:B.11、A【解析】先根據(jù)頻率分布直方圖確定成績?cè)趦?nèi)的頻率,進(jìn)而可求出結(jié)果.【詳解】由題意可得:成績?cè)趦?nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎(jiǎng)的人數(shù)為.故選A【點(diǎn)睛】本題主要考查頻率分布直方圖,會(huì)根據(jù)頻率分布直方圖求頻率即可,屬于??碱}型.12、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點(diǎn)F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因?yàn)閨k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時(shí),等號(hào)成立,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知可得為的中點(diǎn),再由點(diǎn)差法求所在直線的斜率,即可求得直線的方程【詳解】由,可得為的中點(diǎn),且在橢圓內(nèi),設(shè),,,,則,,,則,即所在直線的斜率為直線的方程為,即故答案為:14、∪【解析】根據(jù)題意得出且與不共線,然后根據(jù)向量數(shù)量積的定義及向量共線的條件求出x的取值范圍.【詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.15、【解析】求導(dǎo),得到,寫出切線方程.【詳解】因?yàn)?,所以,則,所以曲線在點(diǎn)處的切線方程是,即,故答案為:16、(答案不唯一)【解析】利用導(dǎo)函數(shù)周期和奇偶性構(gòu)造導(dǎo)函數(shù),再由導(dǎo)函數(shù)構(gòu)造原函數(shù)列舉即可.【詳解】由知函數(shù)的周期為,則,同時(shí)滿足為偶函數(shù),所以滿足條件.故答案為:(答案不唯一).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)移項(xiàng),兩邊平方即可獲解;(2)利用絕對(duì)值不等式即可.【小問1詳解】即即,即即即或所以不等式的解集為【小問2詳解】由題知對(duì)恒成立因?yàn)?所以,解得即或,所以實(shí)數(shù)的取值范為18、(1)(2)見解析.【解析】(1)在中,,求得,由此能求出四棱錐的體積;(2)由平面,證得和,由此利用線面垂直的判定定理,即可證得平面.試題解析:(1)在中,.在中,.則.(2),為的中點(diǎn),.平面.平面.為中點(diǎn),為為中點(diǎn),,則.平面.考點(diǎn):四棱錐的體積公式;直線與平面垂直的判定與證明.19、(1)(2)【解析】(1)根據(jù)二次不等式與分式不等式的求解方法求得命題p,q為真時(shí)實(shí)數(shù)x的取值范圍,再求交集即可;(2)先求得,再根據(jù)是的必要不充分條件可得,再根據(jù)集合包含關(guān)系,根據(jù)區(qū)間端點(diǎn)列不等式求解即可【小問1詳解】當(dāng)時(shí),,解得,即p為真時(shí),實(shí)數(shù)x的取值范圍為.由,解得,即q為真時(shí),實(shí)數(shù)x的取值范圍為若為真,則,解得實(shí)數(shù)x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設(shè),,則,又由,得,因?yàn)?,則,有,解得因此a的取值范圍為20、(1)單調(diào)增區(qū)間為;(2).【解析】(1)求導(dǎo)由求解.(2)將時(shí),恒成立,轉(zhuǎn)化為時(shí),恒成立,令用導(dǎo)數(shù)法由求解即可.【詳解】(1)因?yàn)楹瘮?shù)所以令,解得,所以單調(diào)增區(qū)間為.(2)因?yàn)闀r(shí),恒成立,所以時(shí),恒成立,令則令因?yàn)闀r(shí),恒成立,所以在單調(diào)遞減.當(dāng)時(shí),在單調(diào)遞減,故符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求.綜上.【點(diǎn)睛】方法點(diǎn)睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;;21、(1)(2)【解析】(1)先求得直線和直線的交點(diǎn)坐標(biāo),再用點(diǎn)斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 520特別企劃:合同優(yōu)惠活動(dòng)方案
- 2025年江蘇省電子產(chǎn)品維修服務(wù)合同(個(gè)人用戶版)(征求意見稿)
- 兩人合作建房合同范本詳解
- 個(gè)人資金借用合同模板大全
- DB6528T 210-2024 板椒聯(lián)合收獲機(jī)作業(yè)技術(shù)規(guī)程
- 個(gè)人借款與補(bǔ)償貿(mào)易合同協(xié)議
- 乳制品經(jīng)銷合同
- 個(gè)人信用擔(dān)保合同示例
- 2025年客戶協(xié)議履行規(guī)范
- 中外合資經(jīng)營企業(yè)合同范本(新能源)
- 2025年中國黃芪提取物市場調(diào)查研究報(bào)告
- 安徽省定遠(yuǎn)重點(diǎn)中學(xué)2024-2025學(xué)年第一學(xué)期高二物理期末考試(含答案)
- 教育教學(xué)質(zhì)量經(jīng)驗(yàn)交流會(huì)上校長講話:聚焦課堂關(guān)注個(gè)體全面提升教育教學(xué)質(zhì)量
- 2024人教新目標(biāo)(Go for it)八年級(jí)英語上冊(cè)【第1-10單元】全冊(cè) 知識(shí)點(diǎn)總結(jié)
- 北京市北師大附中2024-2025學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 七年級(jí)英語閱讀理解55篇(含答案)
- 萬科物業(yè)管理公司全套制度(2016版)
- 動(dòng)物檢疫技術(shù)-動(dòng)物檢疫處理(動(dòng)物防疫與檢疫技術(shù))
- 英語經(jīng)典口語1000句
- 進(jìn)模模具設(shè)計(jì)
- 2021年高考化學(xué)真題和模擬題分類匯編專題20工業(yè)流程題含解析
評(píng)論
0/150
提交評(píng)論