版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省連云港市灌云縣2024屆數(shù)學(xué)高二上期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做“等和數(shù)列”,這個數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣32.設(shè)點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.33.已知函數(shù),若,則()A. B.0C.1 D.24.如圖,空間四邊形中,,,,且,,則()A. B.C. D.5.下列各式正確的是()A. B.C. D.6.若方程表示圓,則實數(shù)的取值范圍為()A. B.C. D.7.已知,為正實數(shù),且,則的最小值為()A. B.C. D.18.拋物線的準(zhǔn)線方程為,則實數(shù)的值為()A. B.C. D.9.在等比數(shù)列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或10.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.11.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.12.過點(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=0二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,,則___________.14.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.15.“第七屆全國畫院美術(shù)作品展”于2021年12月2日至2022年2月20日在鄭州美術(shù)館展出.已知某油畫作品高2米,寬6米,畫的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設(shè)該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應(yīng)為___________米.16.直線與直線間的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)撫州市為了了解學(xué)生的體能情況,從全市所有高一學(xué)生中按80:1的比例隨機抽取200人進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,分為組畫出頻率分布直方圖如圖所示,現(xiàn)一,二兩組數(shù)據(jù)丟失,但知道第二組的頻率是第一組的3倍(1)若次數(shù)在以上含次為優(yōu)秀,試估計全市高一學(xué)生的優(yōu)秀率是多少?全市優(yōu)秀學(xué)生的人數(shù)約為多少?(2)求第一組、第二小組的頻率是多少?并補齊頻率分布直方圖;(3)估計該全市高一學(xué)生跳繩次數(shù)的中位數(shù)和平均數(shù)?18.(12分)《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側(cè)棱底面,且,過棱的中點,作交于點,連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值19.(12分)等差數(shù)列的前n項和為,已知(1)求的通項公式;(2)若,求n的最小值20.(12分)已知函數(shù)(1)若在點處的切線與軸平行,求的值;(2)當(dāng)時,求證:;(3)若函數(shù)有兩個零點,求的取值范圍21.(12分)已知函數(shù)(a為常數(shù))(1)討論函數(shù)的單調(diào)性;(2)不等式在上恒成立,求實數(shù)a的取值范圍.22.(10分)已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設(shè)直線,分別與軸交于點,.判斷,大小關(guān)系,并加以證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用已知即可求得,再利用已知可得:,問題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點睛】本題主要考查了新概念知識,考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題2、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.3、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.4、C【解析】根據(jù)空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C5、C【解析】利用導(dǎo)數(shù)的四則運算即可求解.【詳解】對于A,,故A錯誤;對于B,,故B錯誤;對于C,,故C正確;對于D,,故D錯誤;故選:C6、D【解析】將方程化為標(biāo)準(zhǔn)式即可.【詳解】方程化為標(biāo)準(zhǔn)式得,則.故選:D.7、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時等號成立,故的最小值為1,故選:D.8、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B9、B【解析】由韋達定理得a3a15=2,由等比數(shù)列通項公式性質(zhì)得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用10、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D11、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.12、A【解析】當(dāng)直線被圓截得的最弦長最大時,直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(-2,1),所以所求直線的方程為,即故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)時,,可得,可得數(shù)列隔項成等比數(shù)列,即所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,分別求和,即可得解.【詳解】因為,,所以,當(dāng)時,,∴,所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,所以.故答案為:.14、【解析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.15、【解析】設(shè),進而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設(shè),則,,所以,當(dāng)且僅當(dāng)時取“=”.所以該游客離墻距離為米時,觀賞視角最大.故答案為:.16、【解析】利用平行間的距離公式可求得結(jié)果.【詳解】由平行線間的距離公式可知,直線、間的距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)8640;(2)第一組頻率為,第二組頻率為.頻率分布直方圖見解析;(3)中位數(shù)為,均值為121.9【解析】(1)求出優(yōu)秀的頻率,計算出抽取的人員中優(yōu)秀學(xué)生數(shù)后可得全體優(yōu)秀學(xué)生數(shù);(2)由頻率和為1求得第一組、第二組頻率,然后可補齊頻率分布直方圖;(3)在頻率分布直方圖中計算出頻率對應(yīng)的值即為中位數(shù),用各組數(shù)據(jù)中點值乘以頻率后相加得均值【詳解】(1)由頻率分布直方圖,分?jǐn)?shù)在120分以上的頻率為,因此優(yōu)秀學(xué)生有(人);(2)設(shè)第一組頻率為,則第二組頻率為,所以,,第一組頻率為,第二組頻率為頻率分布直方圖如下:(3)前3組數(shù)據(jù)的頻率和為,中位數(shù)在第四組,設(shè)中位數(shù)為,則,均值為18、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,DE是鱉臑D?BCE的高,BC⊥CE,,由此能求出的值(3)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線與平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可【小問1詳解】因為PD⊥底面ABCD,所以PD⊥BC,由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE又因為PD=CD,點E是PC的中點,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB;【小問2詳解】由已知,PD是陽馬P?ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,點E是PC的中點,∴,∴【小問3詳解】如圖所示,在面BPC內(nèi),延長BC與FE交于點G,則DG是平面DEF與平面ABCD的交線由(1)知,PB⊥平面DEF,所以PB⊥DG又因為PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF與面ABCD所成二面角的平面角,設(shè)PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,則,解得所以故當(dāng)面DEF與面ABCD所成二面角的大小為時,19、(1)(2)12【解析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問1詳解】解:設(shè)的公差為d,因為,可得,解得,所以,即數(shù)列的通項公式為【小問2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因為,所以當(dāng)時,,故n的最小值為1220、(1);(2)證明見解析;(3).【解析】(1)由可求得實數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當(dāng)時,,該函數(shù)的定義域為,,令,其中,則,故函數(shù)在上遞減,因為,,所以,存在,使得,則,且,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以,,所以,當(dāng)時,.【小問3詳解】解:函數(shù)的定義域為,.令,其中,則,所以,函數(shù)單調(diào)遞減,因為函數(shù)有兩個零點,等價于函數(shù)在上存在唯一的極值點,且為極大值點,且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因為,由,可得,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實數(shù)的取值范圍是.【點睛】方法點睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù);(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).21、(1)當(dāng)時,在定義域上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)求出的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間即得解;(2)問題轉(zhuǎn)化為,,,令,求出的最大值,從而求出的范圍即得解【詳解】解:(1)函數(shù)的定義域為,,①當(dāng)時,,,,在定義域上單調(diào)遞增②當(dāng)時,若,則,在上單調(diào)遞增;若,則,在上單調(diào)遞減綜上所述,當(dāng)時,在定義域上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減(2)當(dāng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年行政合同范本:行政主體合同履約保障與優(yōu)益權(quán)執(zhí)行3篇
- 2024年行業(yè)競爭回避協(xié)議
- 2024年綠色環(huán)保項目宣傳推廣合同
- 2024年綜合外墻保溫施工協(xié)議3篇
- 2024年綠色生態(tài)石材項目承包施工及后期維護服務(wù)合同3篇
- 2024年租車簡易版:標(biāo)準(zhǔn)汽車租賃協(xié)議
- 2024版專業(yè)技術(shù)人員國內(nèi)外進修協(xié)議樣式一
- 《靜脈炎的護理》課件
- 2025年度餐飲企業(yè)員工勞動合同續(xù)簽與調(diào)整協(xié)議3篇
- 2024年高端服裝定制加工合同
- 八年級上冊語文期中試卷含答案
- 考研計算機學(xué)科專業(yè)基礎(chǔ)(408)研究生考試試卷與參考答案(2025年)
- 糖尿病病人的飲食教育
- 重大火災(zāi)隱患判定方法知識培訓(xùn)
- 海南省申論真題2020年(縣級及以上)
- 裝配式部分包覆鋼-混凝土組合結(jié)構(gòu)技術(shù)規(guī)程
- 四川新農(nóng)村建設(shè)農(nóng)房設(shè)計方案圖集川東南部分
- 2024中國工業(yè)品電商采購白皮書
- 公安機關(guān)保密協(xié)議
- 蛇年金蛇賀歲
- 人教版九年級數(shù)學(xué)上冊全冊同步練習(xí)
評論
0/150
提交評論