版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省株洲市茶陵縣二中2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若傾斜角為的直線過,兩點(diǎn),則實(shí)數(shù)()A. B.C. D.2.正三棱柱各棱長(zhǎng)均為為棱的中點(diǎn),則點(diǎn)到平面的距離為()A. B.C. D.13.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.4.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項(xiàng)公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.165.已知等比數(shù)列滿足,,則()A.21 B.42C.63 D.846.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或77.函數(shù)在處有極值為,則的值為()A. B.C. D.8.若曲線與曲線在公共點(diǎn)處有公共切線,則實(shí)數(shù)()A. B.C. D.9.若構(gòu)成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,10.在中,、、所對(duì)的邊分別為、、,若,,,則()A. B.C. D.11.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時(shí),有恒成立.則不等式的解集為()A. B.C. D.12.拋物線的焦點(diǎn)到雙曲線的漸近線的距離是()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,且直線l與橢圓交于C,D兩點(diǎn),若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.14.中國(guó)三大名樓之一的黃鶴樓因其獨(dú)特的建筑結(jié)構(gòu)而聞名,其外觀有五層而實(shí)際上內(nèi)部有九層,隱喻“九五至尊”之意,為迎接2022年春節(jié)的到來,有網(wǎng)友建議在黃鶴樓內(nèi)部掛燈籠進(jìn)行裝飾,若在黃鶴樓內(nèi)部九層塔樓共掛1533盞燈籠,且相鄰的兩層中,下一層的燈籠數(shù)是上一層燈籠數(shù)的兩倍,則內(nèi)部塔樓的頂層應(yīng)掛______盞燈籠15.已知數(shù)列滿足:,,則______16.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個(gè)數(shù)為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正方體中,為的中點(diǎn),點(diǎn)在棱上(1)若,證明:與平面不垂直;(2)若平面,求平面與平面的夾角的余弦值18.(12分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,直線與拋物線交于兩點(diǎn).(1)求此拋物線的方程;(2)若以為直徑的圓過原點(diǎn)O,求實(shí)數(shù)k的值.19.(12分)已知橢圓:的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,且經(jīng)過點(diǎn).(1)求的標(biāo)準(zhǔn)方程;(2)的右頂點(diǎn)為,過右焦點(diǎn)的直線與交于不同的兩點(diǎn),,求面積的最大值.20.(12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,若x=時(shí),y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值21.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,過點(diǎn)的直線l交橢圓于A,兩點(diǎn),的中點(diǎn)坐標(biāo)為.(1)求直線l的方程;(2)求的面積.22.(10分)已知數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,設(shè),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線的傾斜角和斜率的關(guān)系得到直線的斜率為,再根據(jù)兩點(diǎn)的斜率公式計(jì)算可得;【詳解】解:因?yàn)橹本€的傾斜角為,所以直線的斜率為,所以,解得;故選:C2、C【解析】建立空間直角坐標(biāo)系,利用點(diǎn)面距公式求得正確答案.【詳解】設(shè)分別是的中點(diǎn),根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點(diǎn)到平面的距離為.故選:C3、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.4、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時(shí),,使的正整數(shù)n的最大值為,故選:C5、D【解析】設(shè)等比數(shù)列公比為q,根據(jù)給定條件求出即可計(jì)算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D6、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D7、B【解析】根據(jù)函數(shù)在處有極值為,由,求解.【詳解】因?yàn)楹瘮?shù),所以,所以,,解得a=6,b=9,=-3,故選:B8、A【解析】設(shè)公共點(diǎn)為,根據(jù)導(dǎo)數(shù)的幾何意義可得出關(guān)于、的方程組,即可解得實(shí)數(shù)、的值.【詳解】設(shè)公共點(diǎn)為,的導(dǎo)數(shù)為,曲線在處的切線斜率,的導(dǎo)數(shù)為,曲線在處的切線斜率,因?yàn)閮汕€在公共點(diǎn)處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A9、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對(duì)于A,由,所以,,共面;對(duì)于B,由,所以,,共面;對(duì)于D,,所以,,共面,故選:C.10、B【解析】利用正弦定理,以及大邊對(duì)大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.11、B【解析】根據(jù)當(dāng)時(shí),可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時(shí),,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時(shí),,不合題意;綜上所述:的解集為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)零點(diǎn)確定不等式的解集.12、B【解析】先確定拋物線的焦點(diǎn)坐標(biāo),和雙曲線的漸近線方程,再由點(diǎn)到直線的距離公式即可求出結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,雙曲線的漸近線方程為,由點(diǎn)到直線的距離公式可得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##0.25【解析】求出點(diǎn)A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計(jì)算作答.【詳解】依題意,點(diǎn),直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:14、【解析】根據(jù)給定條件,各層燈籠數(shù)從上到下排成一列構(gòu)成等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式計(jì)算作答.【詳解】依題意,各層燈籠數(shù)從上到下排成一列構(gòu)成等比數(shù)列,公比,前9項(xiàng)和為1533,于是得,解得,所以內(nèi)部塔樓的頂層應(yīng)掛3盞燈籠.故答案為:315、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因?yàn)?,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:16、【解析】通過觀察、分析、歸納,找出規(guī)律運(yùn)算求解即可【詳解】前行共有正整數(shù)個(gè),即個(gè),因此第行第個(gè)數(shù)是全體正整數(shù)中第個(gè),即為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)設(shè)正方體的棱長(zhǎng)為,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,計(jì)算出,即可證得結(jié)論成立;(2)利用空間向量法可求得平面與平面的夾角的余弦值.【小問1詳解】證明:以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為,則、、、,由得點(diǎn)的坐標(biāo)為,,,因?yàn)?,所以與不垂直,所以與平面不垂直【小問2詳解】解:設(shè),則,,因?yàn)槠矫?,所以,所以,得,且,即,所以,,設(shè)平面的法向量為,由,取,可得,因?yàn)槠矫?,所以平面的一個(gè)法向量為,所以,所以平面與平面所成夾角的余弦值為18、(1)(2)【解析】(1)根據(jù)焦點(diǎn)到準(zhǔn)線的距離,可得到,可得結(jié)果.(2)假設(shè)的坐標(biāo),得到,然后聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,根據(jù),可得結(jié)果.【詳解】(1)由題知:拋物線的焦點(diǎn)到準(zhǔn)線的距離為,∴拋物線的方程為(2)設(shè)聯(lián)立,得,則,,,∵以為直徑圓過原點(diǎn)O,∴,∴,即,解得或(舍),∴【點(diǎn)睛】本題主要考查直線與拋物線的幾何關(guān)系的應(yīng)用,屬基礎(chǔ)題.19、(1);(2)【解析】(1)利用已知條件,結(jié)合橢圓方程求出,即可得到橢圓方程(2)設(shè)出直線方程,聯(lián)立橢圓與直線方程,利用韋達(dá)定理,弦長(zhǎng)公式,列出三角形的面積,再利用基本不等式轉(zhuǎn)化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標(biāo)準(zhǔn)方程為(2)點(diǎn),右焦點(diǎn),由題意知直線的斜率不為0,故設(shè)的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí):,所以面積的最大值為【點(diǎn)睛】本題考查橢圓的性質(zhì)和方程的求法,考查聯(lián)立直線方程和橢圓方程消去未知數(shù),運(yùn)用韋達(dá)定理化簡(jiǎn)整理和運(yùn)算能力,屬于中檔題20、(1);(2)最大值為,最小值為.【解析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義列方程組,即可得解;(2)求導(dǎo),確定函數(shù)的單調(diào)性和極值,再和端點(diǎn)值比較即可得解.【詳解】(1)由題意,,因?yàn)榍€y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,所以,,又當(dāng)時(shí),y=f(x)有極值,所以,所以;(2)由(1)得,,所以當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;又,,,,所以在[-3,1]上的最大值為,最小值為.21、(1)(2)【解析】(1)設(shè),根據(jù)AB的中點(diǎn)坐標(biāo)可得,再利用點(diǎn)差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點(diǎn),聯(lián)立直線和橢圓方程,消,利用韋達(dá)定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設(shè),因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年行政合同范本:行政主體合同履約保障與優(yōu)益權(quán)執(zhí)行3篇
- 2024年行業(yè)競(jìng)爭(zhēng)回避協(xié)議
- 2024年綠色環(huán)保項(xiàng)目宣傳推廣合同
- 2024年綜合外墻保溫施工協(xié)議3篇
- 2024年綠色生態(tài)石材項(xiàng)目承包施工及后期維護(hù)服務(wù)合同3篇
- 2024年租車簡(jiǎn)易版:標(biāo)準(zhǔn)汽車租賃協(xié)議
- 2024版專業(yè)技術(shù)人員國(guó)內(nèi)外進(jìn)修協(xié)議樣式一
- 《靜脈炎的護(hù)理》課件
- 2025年度餐飲企業(yè)員工勞動(dòng)合同續(xù)簽與調(diào)整協(xié)議3篇
- 2024年高端服裝定制加工合同
- 邁瑞天地人血培養(yǎng)基礎(chǔ)介紹
- 暫態(tài)地電壓局部放電檢測(cè)技術(shù)課件
- 220kV變壓器監(jiān)造細(xì)則
- 九宮數(shù)獨(dú)題目200題(附答案)
- 《普通動(dòng)物學(xué)》課件P脊索動(dòng)物門(5)鳥綱
- 《色彩基礎(chǔ)知識(shí)》PPT課件(詳解)
- 污水管道工程監(jiān)理控制要點(diǎn)
- 潮流能發(fā)電及潮流能發(fā)電裝置匯總
- 課堂教學(xué)能力提升(課堂PPT)
- vienna整流器交錯(cuò)并聯(lián)三相pfc電路
- 哈爾濱師范大學(xué)與堪培拉大學(xué)合作培養(yǎng)
評(píng)論
0/150
提交評(píng)論