2022-2023學年江西省豐城四中高三下學期返校第一次聯考(數學試題理)試卷_第1頁
2022-2023學年江西省豐城四中高三下學期返校第一次聯考(數學試題理)試卷_第2頁
2022-2023學年江西省豐城四中高三下學期返校第一次聯考(數學試題理)試卷_第3頁
2022-2023學年江西省豐城四中高三下學期返校第一次聯考(數學試題理)試卷_第4頁
2022-2023學年江西省豐城四中高三下學期返校第一次聯考(數學試題理)試卷_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年江西省豐城四中高三下學期返校第一次聯考(數學試題理)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.2.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數多于其他任何人)的概率是()A. B. C. D.3.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.4.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.5.設函數的定義域為,命題:,的否定是()A., B.,C., D.,6.若函數的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.7.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.9.“”是“函數的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且11.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.12.已知等差數列的公差不為零,且,,構成新的等差數列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.14.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標原點,若在第一象限,那么_______________.15.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數的單調增區(qū)間是____;最大值為____.16.在中,若,則的范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.18.(12分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質,健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現有甲、乙兩人各自獨立地來該健身館健身,設甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數學期望為依據,預測此次促銷活動后健身館每天的營業(yè)額.19.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.20.(12分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數m,都有,并證明你的結論.21.(12分)求下列函數的導數:(1)(2)22.(10分)已知,,且.(1)求的最小值;(2)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。2、B【解析】

將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.3、D【解析】

根據拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.4、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.5、D【解析】

根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.6、B【解析】

把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數為,四個選項都不合題意,若,則函數為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數的對稱軸,掌握正弦函數的性質是解題關鍵.7、D【解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.8、B【解析】

列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當,時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.9、A【解析】

先求解函數的圖象關于直線對稱的等價條件,得到,分析即得解.【詳解】若函數的圖象關于直線對稱,則,解得,故“”是“函數的圖象關于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數學運算的能力,屬于基礎題.10、B【解析】由且可得,故選B.11、A【解析】

求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質的應用.12、D【解析】

利用等差數列的通項公式可得,再利用等差數列的前項和公式即可求解.【詳解】由,,構成等差數列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數列的通項公式、等差數列的前項和公式,需熟記公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數原理;1.古典概型.14、2【解析】

如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準線的垂線,垂足分別為M,N,過點B作于點E,設|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點睛】本題主要考查直線和拋物線的位置關系,考查拋物線的定義,意在考查學生對這些知識的理解掌握水平.15、(或寫成)【解析】試題分析:設,取中點則,因此,所以,因為在單調遞增,最大值為所以單調增區(qū)間是,最大值為考點:函數最值,函數單調區(qū)間16、【解析】

借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數的圖象和性質即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.【點睛】本題考查了三角函數的化簡,重點考查學生的計算能力,難度一般.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)連接,設,連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【詳解】(1)連接,設,連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,,,,所以,因為,所以,所以點的坐標為,所以,,設為平面的法向量,則,令,解得,,所以,即為平面的一個法向量.,同理可求得平面的一個法向量為所以所以二面角的正弦值為【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)見解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(1)結果求均值.【詳解】解:(1)由題設知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數學期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.19、證明見解析【解析】

根據相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關系,故可根據判定定理一需找到另外一組相等角,結合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因為,所以.在與中,,,故~.【點睛】本題考查平面幾何中同弧所對的圓心角與圓周角的關系、相似三角形的判定定理;考查邏輯推理能力和數形結合思想;分析圖形,找出角與角之間的關系是證明本題的關鍵;屬于基礎題.20、(1);(2)存在,Q為線段中點【解析】

解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大??;(2)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數量積可求線面角;(2)設上存在一定點Q,設此點的橫坐標為,可得,由向量垂直,數量積等于零即可求解.【詳解】(1)解法一:連接交于,設與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數,都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設此點的橫坐標為,則,,依題意,對于任意的實數要使,等價于,即,解得,即當Q為線段中點時,對于任意的實數,都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應用,屬于中檔題.21、(1);(2).【解析】

(1)根據

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論