江西省宜春市豐城市豐城九中2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
江西省宜春市豐城市豐城九中2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
江西省宜春市豐城市豐城九中2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
江西省宜春市豐城市豐城九中2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
江西省宜春市豐城市豐城九中2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省宜春市豐城市豐城九中2024屆高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B.2C. D.42.在空間直角坐標(biāo)系中,已知點(diǎn),,則線段的中點(diǎn)坐標(biāo)與向量的模長分別是()A.;5 B.;C.; D.;3.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°4.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.5.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.6.已知,,若,則xy的最小值是()A. B.C. D.7.已知呈線性相關(guān)的變量x與y的部分?jǐn)?shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.78.已知直線與直線,若,則()A.6 B.C.2 D.9.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.1610.幾何學(xué)史上有一個(gè)著名的米勒問題:“設(shè)點(diǎn)、是銳角的一邊上的兩點(diǎn),試在邊上找一點(diǎn),使得最大的.”如圖,其結(jié)論是:點(diǎn)為過、兩點(diǎn)且和射線相切的圓的切點(diǎn).根據(jù)以上結(jié)論解決一下問題:在平面直角坐標(biāo)系中,給定兩點(diǎn),,點(diǎn)在軸上移動(dòng),當(dāng)取最大值時(shí),點(diǎn)的橫坐標(biāo)是()A.B.C.或D.或11.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.12.在等比數(shù)列中,,,則等于()A. B.5C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知球的半徑為4,圓與圓為該球的兩個(gè)小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________14.已知雙曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,則其漸近線方程為__________15.四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4(I)證明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值16.已知過橢圓上的動(dòng)點(diǎn)作圓(為圓心):的兩條切線,切點(diǎn)分別為,若的最小值為,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)用長度為80米的護(hù)欄圍出一個(gè)一面靠墻的矩形運(yùn)動(dòng)場地,如圖所示,運(yùn)動(dòng)場地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關(guān)于的函數(shù)關(guān)系;(2)求的最大值18.(12分)在直角坐標(biāo)系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.(1)寫出曲線C的極坐標(biāo)方程;(2)已知直線與曲線C相交于A,B兩點(diǎn),求.19.(12分)已知橢圓的右焦點(diǎn)為,且經(jīng)過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點(diǎn)為,過點(diǎn)的直線(與軸不重合)交橢圓于兩點(diǎn),直線交直線于點(diǎn),若直線上存在另一點(diǎn),使.求證:三點(diǎn)共線.20.(12分)如圖,在四棱錐中,四邊形為平行四邊形,且,,三角形為等腰直角三角形,且,.(1)若點(diǎn)為棱的中點(diǎn),證明:平面平面;(2)若平面平面,點(diǎn)為棱的中點(diǎn),求直線與平面所成角的正弦值.21.(12分)已知橢圓的左、右焦點(diǎn)分別為,,且橢圓過點(diǎn),離心率,為坐標(biāo)原點(diǎn),過且不平行于坐標(biāo)軸的動(dòng)直線與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.22.(10分)已知橢圓的離心率是,且過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于A、B兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先求出,然后根據(jù)復(fù)數(shù)的模求解即可【詳解】,,則,故選:C2、B【解析】根據(jù)給定條件利用中點(diǎn)坐標(biāo)公式及空間向量模長的坐標(biāo)表示計(jì)算作答.【詳解】因點(diǎn),,所以線段的中點(diǎn)坐標(biāo)為,.故選:B3、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設(shè),直線斜率,若直線的傾斜角為,則,∵,∴.故選:D4、A【解析】模擬程序運(yùn)行可得程序框圖的功能是計(jì)算并輸出三個(gè)數(shù)中的最小數(shù),計(jì)算三個(gè)數(shù)判斷作答.【詳解】模擬程序運(yùn)行可得程序框圖的功能是計(jì)算并輸出三個(gè)數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A5、C【解析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對稱性,可得,過點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C6、C【解析】對使用基本不等式,這樣得到關(guān)于的不等式,解出xy的最小值【詳解】因?yàn)?,,由基本不等式得:,所以,解得:,?dāng)且僅當(dāng),即,時(shí),等號成立故選:C7、A【解析】根據(jù)回歸直線過樣本點(diǎn)的中心進(jìn)行求解即可.【詳解】由題意可得,,則,解得故選:A.8、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因?yàn)橹本€與直線,且,所以,解得;故選:A9、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時(shí)取等.故選:B.10、A【解析】根據(jù)米勒問題的結(jié)論,點(diǎn)應(yīng)該為過點(diǎn)、的圓與軸的切點(diǎn),設(shè)圓心的坐標(biāo)為,寫出圓的方程,并將點(diǎn)、的坐標(biāo)代入可求出點(diǎn)的橫坐標(biāo).【詳解】解:設(shè)圓心的坐標(biāo)為,則圓的方程為,將點(diǎn)、的坐標(biāo)代入圓的方程得,解得或(舍去),因此,點(diǎn)的橫坐標(biāo)為,故選:A.11、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因?yàn)?,所?故選:C.12、D【解析】由等比數(shù)列的項(xiàng)求公比,進(jìn)而求即可.【詳解】由題設(shè),,∴故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.14、【解析】根據(jù)雙曲線的定義由焦點(diǎn)坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因?yàn)殡p曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:15、(Ⅰ)詳見解析;(Ⅱ).【解析】(Ⅰ)推導(dǎo)出BE⊥BC,從而BE⊥平面ABC,進(jìn)而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能證明AB⊥面BCDE(Ⅱ)以B為原點(diǎn),所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣AD﹣E的正弦值【詳解】由側(cè)面底面,且交線為,底面為矩形所以平面,又平面,所以由面面,同理可證,又面在底面中,,由面,故,以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系,則,設(shè)平面的法向量,則,取所以平面的法向量,同理可求得平面的法向量.設(shè)二面角的平面角為,則故所求二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題16、【解析】由橢圓方程和圓的方程可確定橢圓焦點(diǎn)、圓心和半徑;當(dāng)最小時(shí),可知,此時(shí);根據(jù)橢圓性質(zhì)知,解方程可求得,進(jìn)而得到離心率.【詳解】由橢圓方程知其右焦點(diǎn)為;由圓的方程知:圓心為,半徑為;當(dāng)最小時(shí),則最小,即,此時(shí)最?。淮藭r(shí),;為橢圓右頂點(diǎn)時(shí),,解得:,橢圓的離心率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)平方米【解析】(1)由題意得矩形場地的另一邊長為80-2x米,通過矩形面積得出關(guān)于的函數(shù)表達(dá)式;(2)利用二次函數(shù)的性質(zhì)求出的最大值即可【小問1詳解】解:由題意得矩形場地的另一邊長為80-2x米,又,得,所以【小問2詳解】解:由(1)得,當(dāng)且僅當(dāng)時(shí),函數(shù)取得最大值平方米18、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標(biāo)方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標(biāo)方程為.(2)聯(lián)立方程組,消去得,設(shè)點(diǎn)A,B對應(yīng)的極徑分別為,,則,,所以.19、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計(jì)算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點(diǎn)M的坐標(biāo),求出點(diǎn)N的坐標(biāo),再利用斜率推理作答.【小問1詳解】依題意,橢圓的左焦點(diǎn),由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點(diǎn),直線的斜率,直線的斜率,,而,即,所以三點(diǎn)共線.【點(diǎn)睛】思路點(diǎn)睛:解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系20、(1)證明見解析(2)【解析】(1)先證明,,進(jìn)而證明平面,即可證明平面,從而證明平面平面.(2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,用向量法求解即可【小問1詳解】因?yàn)闉榈妊苯侨切?,點(diǎn)為棱的中點(diǎn),所以,又因?yàn)?,,所以,又因?yàn)樵谥?,,,所以,所以,所以,又因?yàn)?,所以平面,又因?yàn)闉槠叫兴倪呅?,所以,所以平面,又因?yàn)槠矫妫云矫嫫矫?【小問2詳解】因?yàn)槠矫嫫矫?,平面平面,,所以平面,又因?yàn)椋渣c(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系.則,,,,所以,,,,設(shè)平面的一個(gè)法向量為,則由,,可得令,得,設(shè)直線與平面所成角為,,所以直線與平面所成角的正弦值為.21、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點(diǎn)及離心率,列方程組,再求解即得;(2)設(shè)出點(diǎn)A,B坐標(biāo)并列出它們滿足的關(guān)系,利用點(diǎn)差法即可作答;(3)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,借助韋達(dá)定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè),,,,由(1)知,,兩式相減得,即,而弦的中點(diǎn),則有,所以;(3)假定存在符合要求的點(diǎn)P,由(1)知,設(shè)直線的方程為,由得:,則,,于是得,從而得點(diǎn),,因?yàn)榈冗吶切危从?,,因此,,,從而得,整理得,無解,所以在y軸上不存在點(diǎn),使得為等邊三角形.22、(1);(2)2.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組即可求得橢圓標(biāo)準(zhǔn)方程;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論