




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年湖北省松滋市四中區(qū)域教師研修一體課程復(fù)數(shù)與邏輯注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個(gè)數(shù)為()A.4 B.3 C.2 D.12.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.3.已知集合,,則集合子集的個(gè)數(shù)為()A. B. C. D.4.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.5.過(guò)拋物線的焦點(diǎn)且與的對(duì)稱軸垂直的直線與交于,兩點(diǎn),,為的準(zhǔn)線上的一點(diǎn),則的面積為()A.1 B.2 C.4 D.86.木匠師傅對(duì)一個(gè)圓錐形木件進(jìn)行加工后得到一個(gè)三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.7.設(shè),,,則()A. B. C. D.8.已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.9.已知集合,則()A. B. C. D.10.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.11.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.12.將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對(duì)于任意的正數(shù),不等式恒成立,則的最大值為_(kāi)____.14.設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為_(kāi)___________.15.已知,滿足約束條件則的最大值為_(kāi)_________.16.已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F(xiàn)是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知的內(nèi)角的對(duì)邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長(zhǎng)是否有最大值?如果有,求出這個(gè)最大值,如果沒(méi)有,請(qǐng)說(shuō)明理由.18.(12分)已知數(shù)列中,(實(shí)數(shù)為常數(shù)),是其前項(xiàng)和,且數(shù)列是等比數(shù)列,恰為與的等比中項(xiàng).(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項(xiàng)公式;(3)若,當(dāng)時(shí),的前項(xiàng)和為,求證:對(duì)任意,都有.19.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.20.(12分)如圖,在直三棱柱中,,,為的中點(diǎn),點(diǎn)在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.21.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點(diǎn).(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點(diǎn)P的極坐標(biāo)為,,求的值.22.(10分)已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且的周長(zhǎng)為6,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線交于點(diǎn).(1)求橢圓方程;(2)若直線與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
①根據(jù)線性相關(guān)性與r的關(guān)系進(jìn)行判斷,
②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進(jìn)行判斷,
③根據(jù)方差關(guān)系進(jìn)行判斷,
④根據(jù)點(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),而回歸直線必過(guò)樣本中心點(diǎn),可進(jìn)行判斷.【詳解】①若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故①正確;
②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯(cuò)誤;
③若統(tǒng)計(jì)數(shù)據(jù)的方差為1,則的方差為,故③正確;
④因?yàn)辄c(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),即,不一定成立,而回歸直線必過(guò)樣本中心點(diǎn),所以當(dāng),時(shí),點(diǎn)必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯(cuò)誤;
所以正確的命題有①③.
故選:C.【點(diǎn)睛】本題考查兩個(gè)隨機(jī)變量的相關(guān)性,擬合性檢驗(yàn),兩個(gè)線性相關(guān)的變量間的方差的關(guān)系,以及兩個(gè)變量的線性回歸方程,注意理解每一個(gè)量的定義,屬于基礎(chǔ)題.2、B【解析】試題分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點(diǎn)評(píng):算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.3、B【解析】
首先求出,再根據(jù)含有個(gè)元素的集合有個(gè)子集,計(jì)算可得.【詳解】解:,,,子集的個(gè)數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個(gè)數(shù)的計(jì)算公式,屬于基礎(chǔ)題.4、C【解析】
利用線線、線面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.5、C【解析】
設(shè)拋物線的解析式,得焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,這樣可設(shè)點(diǎn)坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過(guò)拋物線的焦點(diǎn),,是與的交點(diǎn),又軸,∴可設(shè)點(diǎn)坐標(biāo)為,代入,解得,又∵點(diǎn)在準(zhǔn)線上,設(shè)過(guò)點(diǎn)的的垂線與交于點(diǎn),,∴.故應(yīng)選C.【點(diǎn)睛】本題考查拋物線的性質(zhì),解題時(shí)只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點(diǎn)坐標(biāo),從而求得參數(shù)的值.本題難度一般.6、C【解析】
由三視圖知幾何體是一個(gè)從圓錐中截出來(lái)的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點(diǎn)睛】本題考查了三視圖還原幾何體及體積求解問(wèn)題,考查了學(xué)生空間想象,數(shù)學(xué)運(yùn)算能力,難度一般.7、A【解析】
先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.8、D【解析】
根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因?yàn)闉榈妊切?,,所以?,又,,解得,所以雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.9、C【解析】
解不等式得出集合A,根據(jù)交集的定義寫(xiě)出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點(diǎn)睛】本題考查了解不等式與交集的運(yùn)算問(wèn)題,是基礎(chǔ)題.10、A【解析】
化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問(wèn)題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。11、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.12、B【解析】
根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時(shí),,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)均為正數(shù),等價(jià)于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價(jià)于恒成立,令則,當(dāng)且僅當(dāng)即時(shí)取得等號(hào),故的最大值為.故答案為:【點(diǎn)睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價(jià)變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.14、【解析】
根據(jù)漸近線得到,,計(jì)算得到離心率.【詳解】,一條漸近線方程為:,故,,.故答案為:.【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,意在考查學(xué)生的計(jì)算能力.15、1【解析】
先畫(huà)出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過(guò)點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問(wèn)題,我們常用幾何法求最值.16、【解析】
由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過(guò)作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時(shí),取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長(zhǎng),結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準(zhǔn)線上的一點(diǎn)拋物線方程為,準(zhǔn)線方程為過(guò)作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時(shí),最小,此時(shí)直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實(shí)軸長(zhǎng)為,焦距為雙曲線的離心率故答案為:【點(diǎn)睛】本題考查雙曲線離心率的求解問(wèn)題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時(shí),直線與拋物線相切,進(jìn)而根據(jù)拋物線切線方程的求解方法求得點(diǎn)坐標(biāo).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計(jì)算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因?yàn)椋?(Ⅱ)當(dāng)時(shí),的周長(zhǎng)有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因?yàn)?,所以,所以?dāng)即時(shí),取到最大值2,所以的周長(zhǎng)有最大值,最大值為3.【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.18、(1)見(jiàn)解析(2)(3)見(jiàn)解析【解析】
(1)令可得,即.得到,再利用通項(xiàng)公式和前n項(xiàng)和的關(guān)系求解,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項(xiàng)求解,(3)由(2)得到時(shí),,,求得,再代入證明。【詳解】(1)解:令可得,即.所以.時(shí),可得,當(dāng)時(shí),所以.顯然當(dāng)時(shí),滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,恰為與的等比中項(xiàng),所以,解得,所以(3)時(shí),,,而時(shí),,,所以當(dāng)時(shí),.當(dāng)時(shí),,∴對(duì)任意,都有,【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,等差數(shù)列,等比數(shù)列的定義和性質(zhì)以及數(shù)列放縮的方法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題,19、(1)(2)【解析】
(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)椋越獾茫ㄉ幔┗蛩?,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.20、見(jiàn)解析【解析】
(1)如圖,連接,交于點(diǎn),連接,,則為的中點(diǎn),因?yàn)闉榈闹悬c(diǎn),所以,又,所以,從而,,,四點(diǎn)共面.因?yàn)槠矫?,平面,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以?)因?yàn)?,為的中點(diǎn),所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,因?yàn)?,,所以,,,,所以,,.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個(gè)法向量為.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個(gè)法向量為,所以,所以平面與平面所成二面角的正弦值為.21、(1),;(2)2.【解析】
(1)由得,求出曲線的直角坐標(biāo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級(jí)旅游考試題及答案
- 2025-2030中國(guó)兒童安全椅行業(yè)發(fā)展分析及投資風(fēng)險(xiǎn)預(yù)測(cè)研究報(bào)告
- 樹(shù)木學(xué)南方本試題及答案
- 轉(zhuǎn)科轉(zhuǎn)診制度試題及答案
- 浪潮iqt測(cè)試題及答案
- 生產(chǎn)管理基本理論試題及答案
- 醫(yī)療信息共享平臺(tái)在健康教育中的應(yīng)用
- 稅務(wù)協(xié)管員試題及答案
- 職業(yè)道德試題及答案
- 新能源汽車的電池材料創(chuàng)新研究試題及答案
- 2024年煙臺(tái)海陽(yáng)市衛(wèi)生健康局所屬事業(yè)單位招聘工作人員真題
- 2025神農(nóng)科技集團(tuán)有限公司第一批校園招聘17人(山西)筆試參考題庫(kù)附帶答案詳解
- (快手、抖音、淘寶)主播兼職合同10篇
- 砍木伐木合同協(xié)議范本
- 農(nóng)業(yè)科技與裝備應(yīng)用知識(shí)考點(diǎn)
- 延邊大學(xué)教師崗位招聘考試真題2024
- 前廳服務(wù)與管理課件 處理客人投訴
- (二模)咸陽(yáng)市2025年高三高考模擬檢測(cè)(二)物理試卷(含答案)
- 科舉制度的演變及認(rèn)識(shí) 論文
- 臺(tái)球廳員工入職合同(2025年版)
- (2025)漢字聽(tīng)寫(xiě)大會(huì)競(jìng)賽題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論