




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省阜新二中2023-2024學年高二上數(shù)學期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足:對任意的均有成立,且,,則該數(shù)列的前2022項和()A0 B.1C.3 D.42.以下命題是真命題的是()A.方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線可能不經(jīng)過樣本點的中心D.若“”為假命題,則均為假命題3.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.4.已知雙曲線:()的離心率為,則的漸近線方程為()A. B.C. D.5.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條7.已知向量,滿足條件,則的值為()A.1 B.C.2 D.8.命題“,”的否定是A, B.,C., D.,9.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種10.設A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.011.函數(shù)的圖象大致是()A. B.C. D.12.為調(diào)查學生的課外閱讀情況,學校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,2二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是___________.14.如圖,正方體的棱長為1,P為BC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號).①當時,S為四邊形;②當時,S為等腰梯形;③當時,S與的交點R滿足;④當時,S為六邊形;⑤當時,S的面積為.15.已知函數(shù)的導函數(shù)為,且對任意,,若,,則的取值范圍是___________.16.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設A,B為曲線C:y=上兩點,A與B的橫坐標之和為4(1)求直線AB的斜率;(2)設M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程18.(12分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率19.(12分)有1000人參加了某次垃圾分類知識競賽,從中隨機抽取100人,將這100人的此次競賽的分數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下頻率分布直方圖.(1)求圖中a的值;(2)估計總體1000人中競賽分數(shù)不少于70分的人數(shù);(3)假設同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,估計總體1000人的競賽分數(shù)的平均數(shù).20.(12分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數(shù)的值;21.(12分)已知函數(shù)為常數(shù),函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)的圖象與直線相切,求實數(shù)的值;(3)當時,在上有兩個極值點且恒成立,求實數(shù)的取值范圍.22.(10分)如圖,四邊形是一塊邊長為4km正方形地域,地域內(nèi)有一條河流,其經(jīng)過的路線是以中點為頂點且開口向右的拋物線的一部分(河流寬度忽略不計),某公司準備投資一個大型矩形游樂場.(1)設,矩形游樂園的面積為,求與之間的函數(shù)關(guān)系;(2)試求游樂園面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)可知,數(shù)列具有周期性,即可解出【詳解】因為,所以,即,所以數(shù)列中的項具有周期性,,由,,依次對賦值可得,,一個周期內(nèi)項的和為零,而,所以數(shù)列的前2022項和故選:A2、A【解析】A:根據(jù)方差和標準差的定義進行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線必過樣本中心點進行判斷;D:根據(jù)“且”命題真假關(guān)系進行判斷.【詳解】對于A,方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量,故A正確;對于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個數(shù)據(jù)的值,這個數(shù)不一定是原來的,故B錯誤;對于C,回歸直線一定經(jīng)過樣本點的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A3、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B4、A【解析】先根據(jù)雙曲線的離心率得到,然后由,得,即為所求的漸近線方程,進而可得結(jié)果【詳解】∵雙曲線的離心率,∴又由,得,即雙曲線()的漸近線方程為,∴雙曲線的漸近線方程為故選:A5、A【解析】由,結(jié)合基本不等式可得,由此可得,由此說明“”是“”的充分條件,再通過舉反例說明“”不是“”的必要條件,由此確定正確選項.【詳解】∵,∴(當且僅當時等號成立),(當且僅當時等號成立),∴(當且僅當時等號成立),若,則,∴,所以“”是“”的充分條件,當時,,此時,∴“”不是“”的必要條件,∴“”是“”的充分不必要條件,故選:A.6、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎(chǔ)題.7、A【解析】先求出坐標,進而根據(jù)空間向量垂直的坐標運算求得答案.【詳解】因為,所以,解得.故選:A.8、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題9、B【解析】按涂色順序進行分四步,根據(jù)分步乘法計數(shù)原理可得解.【詳解】按涂色順序進行分四步:涂A部分時,有4種涂法;涂B部分時,有3種涂法;涂C部分時,有2種涂法;涂D部分時,有2種涂法.由分步乘法計數(shù)原理,得不同的涂色方法共有種.故選:B.10、A【解析】先化簡A-B,發(fā)現(xiàn)其結(jié)果為二項式展開式,然后計算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點睛】本題主要考查了二項式定理的運用,關(guān)鍵是通過化簡能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項式展開式,然后計算出結(jié)果,屬于基礎(chǔ)題11、A【解析】根據(jù)函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當時,,則在上單調(diào)遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.12、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)拋物線的定義知點P到焦點距離等于到準線的距離即可求解.【詳解】因為拋物線方程為,所以準線方程,所以點到準線的距離為,故點到該拋物線焦點的距離.故答案為:14、①②③⑤【解析】①由如圖當點向移動時,滿足,只需在上取點滿足,即可得截面為四邊形,如圖所示,是四邊形,故①正確;②當時,即為中點,此時可得PQ∥AD,AP=QD==,故可得截面APQD為等腰梯形,等腰梯形,故②正確;③當時,如圖,延長至,使,連接交于,連接交于,連接,可證,由∽,可得,故可得,故③正確;④由③可知當時,只需點上移即可,此時的截面形狀仍然如圖所示的,如圖是五邊形,故④不正確;⑤當時,與重合,取的中點,連接,可證,且,可知截面為為菱形,故其面積為,如圖是菱形,面積為,故⑤正確,故答案為①②③⑤考點:正方體的性質(zhì).15、【解析】構(gòu)造函數(shù),利用導數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性可得解.【詳解】構(gòu)造函數(shù),則,故函數(shù)在上單調(diào)遞減,由已知可得,由可得,可得.故答案為:.16、【解析】先根據(jù)橢圓的方程求得焦點坐標,然后根據(jù)為正六邊形求得點的坐標,即點在雙曲線上,然后解出方程即可【詳解】設雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標為:則點在雙曲線上,可得:又解得:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)y=x+7【解析】(1)設A(x1,y1),B(x2,y2),直線AB的斜率k==,代入即可求得斜率;(2)由(1)中直線AB的斜率,根據(jù)導數(shù)的幾何意義求得M點坐標,設直線AB的方程為y=x+m,與拋物線聯(lián)立,求得根,結(jié)合弦長公式求得AB,由知,|AB|=2|MN|,從而求得參數(shù)m.【詳解】解:(1)設A(x1,y1),B(x2,y2),則x1≠x2,y1=,y2=,x1+x2=4,于是直線AB的斜率k===1(2)由y=,得y′=設M(x3,y3),由題設知=1,解得x3=2,于是M(2,1)設直線AB的方程為y=x+m,故線段AB的中點為N(2,2+m),|MN|=|m+1|將y=x+m代入y=得x2-4x-4m=0當Δ=16(m+1)>0,即m>-1時,x1,2=2±2從而|AB|=|x1-x2|=由題設知|AB|=2|MN|,即=2(m+1),解得m=7所以直線AB的方程為y=x+718、(1)(2)或【解析】(1)根據(jù)題意可得,又因為且,解得,可得雙曲線方程,進而可得的漸近線方程(2)設直線的方程為:,,,聯(lián)立直線與雙曲線方程,可得關(guān)于的一元二次方程,由韋達定理可得,,再由兩點之間距離公式得,解得,進而由可求出,即可求得離心率.【小問1詳解】∵點是雙曲線的一個焦點,∴,又∵且,解得,∴雙曲線方程為,∴的漸近線方程為:;小問2詳解】設直線的方程為,且,,聯(lián)立,可得,則,∴,即,∴,解得或,即由可得或,故雙曲線的離心率或.19、(1)0.040;(2)750;(3)76.5.【解析】(1)由頻率分布直方圖的性質(zhì)列出方程,能求出圖中的值;(2)先求出競賽分數(shù)不少于70分的頻率,由此能估計總體1000人中競賽分數(shù)不少于70分的人數(shù);(3)由頻率分布直方圖的性質(zhì)能估計總體1000人的競賽分數(shù)的平均數(shù)【詳解】(1)由頻率分布直方圖得:,解得圖中的值為0.040(2)競賽分數(shù)不少于70分的頻率為:,估計總體1000人中競賽分數(shù)不少于70分的人數(shù)為(3)假設同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,估計總體1000人的競賽分數(shù)的平均數(shù)為:【點睛】本題主要考查頻率、頻數(shù)、平均數(shù)的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,意在考查學生對這些知識的理解掌握水平20、(1)(2)【解析】(1)根據(jù)拋物線過點,且,利用拋物線的定義求解;(2)設,聯(lián)立,根據(jù),由,結(jié)合韋達定理求解.【小問1詳解】解:由拋物線過點,且,得所以拋物線方程為;【小問2詳解】設,聯(lián)立得,,,,則,,即,解得或,又當時,直線與拋物線的交點中有一點與原點重合,不符合題意,故舍去;所以實數(shù)的值為.21、(1)答案見解析;(2)7;(3)【解析】(1)根據(jù)題意求得,討論,,,時解,即可得出函數(shù)的單調(diào)區(qū)間;(2)設切點為則結(jié)合,得令通過求導研究單調(diào)性解得進而解出的值.(3)由已知可得解析式,觀察有,求導得原題意可轉(zhuǎn)化為函數(shù)在上有兩個不同零點.結(jié)合根分布可得,函數(shù)的兩個極值點為是在上的兩個不同零點可得且,代入函數(shù)中令通過單調(diào)性求出進而可得答案.【詳解】解:(1),令,解得:①當時,由得,由得,在上單調(diào)遞減,在上單調(diào)遞增;②當時,由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增;③當時,恒成立,所以上單調(diào)遞增.④當時,由得或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制藥級噴霧干燥塔行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 橋式排椅企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 速螨酮企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 噪聲治理主動降噪耳機企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 基于深度學習技術(shù)的生物多組學數(shù)據(jù)融合方法研究
- 高性能拉曼量子存儲實驗研究
- 健康保障AI智能設備行業(yè)跨境出海戰(zhàn)略研究報告
- 錳型脫氧催化劑企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 醫(yī)用核磁共振兼容器械企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 仿制藥患者援助基金行業(yè)跨境出海戰(zhàn)略研究報告
- 北京市西城區(qū)2024-2025學年高三上學期期末考試語文試題(解析版)
- 2025年春新人教版數(shù)學一年級下冊課件 第六單元 數(shù)量間的加減關(guān)系 第2課時 求比1個數(shù)多(少)幾的數(shù)
- 北京市朝陽區(qū)2025下半年事業(yè)單位招聘149人歷年高頻重點提升(共500題)附帶答案詳解
- 肩袖損傷課件
- 鋼筋安裝施工技術(shù)交底
- 2025年下學期八年級物理備課組工作計劃
- 聘任全職圍棋教練合同范例
- 華大新高考聯(lián)盟2025屆高三11月教學質(zhì)量測評生物含答案
- 心水病的中醫(yī)護理方案
- 新錄用公務員任職定級審批表
- 成品油運輸 投標方案(技術(shù)方案)
評論
0/150
提交評論