內(nèi)江市重點中學2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題含解析_第1頁
內(nèi)江市重點中學2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題含解析_第2頁
內(nèi)江市重點中學2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題含解析_第3頁
內(nèi)江市重點中學2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題含解析_第4頁
內(nèi)江市重點中學2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

內(nèi)江市重點中學2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正三棱錐中,,且,M,N分別為BC,AD的中點,則直線AM和CN夾角的余弦值為()A. B.C. D.2.已知直線為拋物線的準線,直線經(jīng)過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.83.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.4.橢圓=1的一個焦點為F,過原點O作直線(不經(jīng)過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.5.已知雙曲線的左、右焦點分別為,點在的左支上,過點作的一條漸近線的垂線,垂足為,則的最小值為()A. B.C. D.6.已知且,則下列不等式恒成立的是A. B.C. D.7.已知曲線的方程為,則下列說法正確的是()①曲線關于坐標原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③8.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.9.復數(shù)的虛部為()A. B.C. D.10.“”是“直線與互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.阿基米德(公元前287年~公元前212年)不僅是著名物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A B.C. D.12.已知向量,,且,則實數(shù)等于()A1 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓與圓的公共弦長為______14.已知數(shù)列前項和為,且,則_______.15.已知點是拋物線的準線與x軸的交點,F(xiàn)為拋物線的焦點,P是拋物線上的動點,則最小值為_____16.已知,命題p:,;命題q:,,且為真命題,則a的取值范圍為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的所有棱長都是,平面,為的中點,為的中點(1)證明:直線平面;(2)求平面與平面夾角的余弦值18.(12分)已知雙曲線:的兩條漸近線所成的銳角為且點是上一點(1)求雙曲線的標準方程;(2)若過點的直線與交于,兩點,點能否為線段的中點?并說明理由19.(12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA?PD,E,F(xiàn)分別為AD,PB的中點.求證:(1)EF//平面PCD;(2)平面PAB?平面PCD20.(12分)(1)敘述正弦定理;(2)在△中,應用正弦定理判斷“”是“”成立的什么條件,并加以證明.21.(12分)已知數(shù)列的前項和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.22.(10分)在平面直角坐標系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)已知,曲線與曲線相交于A,B兩點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意可得兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,利用空間向量求解【詳解】因為,所以兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,如圖所示,因為,所以,因為M,N分別為BC,AD的中點,所以,所以,設直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B2、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設直線,則,,而,當且僅當?shù)忍柍闪?,故的最小值?,故選:D.3、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以OA為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以OA為直徑的圓上,而以OA為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D4、A【解析】分情況討論當直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當直線AB的斜率存在時,可設直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A5、D【解析】利用雙曲線定義可得到,將的最小值變?yōu)榈淖钚≈祮栴},數(shù)形結合得解.【詳解】由題意得,故,如圖所示:到漸近線的距離,則,當且僅當,,三點共線時取等號,∴的最小值為.故選:D6、C【解析】∵且,∴∴選C7、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關于坐標原點對稱所以①正確,當時,曲線的方程化為,此時當時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當,時,設,設,則,(當且僅當或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D8、B【解析】設平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.9、D【解析】直接根據(jù).復數(shù)的乘法運算結合復數(shù)虛部的定義即可得出答案【詳解】解:,所以復數(shù)的虛部為.故選:D.10、A【解析】根據(jù)兩直線垂直的性質(zhì)求出,再結合充分條件和必要條件的定義即可得出答案.【詳解】解:因為直線與互相垂直,所以,解得或,所以“”是“直線與互相垂直”的充分不必要條件.故選:A.11、C【解析】由題意,設出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.12、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:14、,.【解析】由的遞推關系,討論、求及,注意驗證是否滿足通項,即可寫出的通項公式.【詳解】當時,,當且時,,而,即也滿足,∴,.故答案為:,.15、【解析】利用已知條件求出p,設出P的坐標,然后求解的表達式,利用基本不等式即可得出結論【詳解】解:由題意可知:,設點,P到直線的距離為d,則,所以,當且僅當x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質(zhì)的應用,基本不等式的應用,屬于中檔題16、【解析】先求出命題p,q為真命題時的a的取值范圍,根據(jù)為真可知p,q都是真命題,即可求得答案.【詳解】命題p:,為真時,有,命題q:,為真時,則有,即,故為真命題時,且,即,故a的取值范圍為,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取的中點,連接交于,連接,,由平面幾何得,再根據(jù)線面平行的判定可得證;(2)建立如圖所示的空間直角坐標系,利用向量法即可得結果.【小問1詳解】取的中點,連接交于,連接,在三棱柱中,為的中點,,為的中點,且,且,四邊形為平行四邊形,又平面,平面,平面;【小問2詳解】平面,,平面,,,兩兩垂直,以為原點,,,所在直線分別為軸,軸,軸,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則即取,則,,又是平面的一個法向量,,故平面和平面夾角的余弦值為18、(1);(2)點不能為線段的中點,理由見解析.【解析】(1)由漸近線夾角求得一個斜率,再代入點的坐標,然后可解得得雙曲線方程;(2)設直線方程為(斜率不存在時另說明),與雙曲線方程聯(lián)立,消元后應用韋達定理,結合中點坐標公式求得,然后難驗證直線與雙曲線是否相交即可得【詳解】解:(1)由題意知,雙曲線的漸近線的傾斜角為30°或60°,即或當時,的標準方程為,代入,無解當時,的標準方程為,代入,解得故的標準方程為(2)不能是線段的中點設交點,,當直線的斜率不存在時,直線與雙曲線只有一個交點,不符合題意.當直線的斜率存在時,設直線方程為,聯(lián)立方程組,整理得,則,由得,將代入判別式,所以滿足題意的直線也不存在所以點不能為線段的中點19、(1)見解析;(2)見解析【解析】(1)取BC中點G,連結EG,F(xiàn)G,推導出,,從而平面平面,由此能得出結論;(2)推導出,從而平面PAD,即得,結合得出平面PCD,由此能證明結論成立.【詳解】(1)取BC中點G,連結EG,F(xiàn)G,∵E,F(xiàn)分別是AD,PB的中點,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因為底面ABCD為矩形,所以,又因為平面平面ABCD,平面平面,平面ABCD,所以平面PAD因為平面PAD,所以.又因為,,所以平面PCD因為平面PAB,所以平面平面PCD【點睛】本題考查線線垂直、線面平行、面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.20、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達正弦定理(2)利用“大角對大邊”的性質(zhì),并根據(jù)正弦定理進行邊角互化即可【詳解】(1)正弦定理:在任意一個三角形中,各邊和它所對角的正弦值之比相等且等于這個三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件21、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求出【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論