版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
蒙古北京八中烏蘭察布分校2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項(xiàng)都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(diǎn)(π,0)是函數(shù)y=sinx圖象上一點(diǎn)2.在平面內(nèi),A,B是兩個(gè)定點(diǎn),C是動(dòng)點(diǎn),若,則點(diǎn)C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線3.設(shè),是兩個(gè)不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知圓,圓相交于P,Q兩點(diǎn),其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.5.如果向量,,共面,則實(shí)數(shù)的值是()A. B.C. D.6.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.7.已知數(shù)列滿足,其前項(xiàng)和為,,.若數(shù)列的前項(xiàng)和為,則滿足成立的的最小值為()A.10 B.11C.12 D.138.設(shè)為拋物線焦點(diǎn),直線,點(diǎn)為上任意一點(diǎn),過(guò)點(diǎn)作于,則()A.3 B.4C.2 D.不能確定9.過(guò)點(diǎn),且斜率為2的直線方程是A. B.C. D.10.三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線的離心率為()A. B.C.或 D.或11.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.112.設(shè),為雙曲線的上,下兩個(gè)焦點(diǎn),過(guò)的直線l交該雙曲線的下支于A,B兩點(diǎn),且滿足,,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,高爾頓釘板是一個(gè)關(guān)于概率的模型,每一黑點(diǎn)表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時(shí),將隨機(jī)的向兩邊等概率的落下.當(dāng)有大量的小球都落下時(shí),最終在釘板下面不同位置收集到小球.現(xiàn)有5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號(hào)位置的概率是______14.曲線在點(diǎn)處的切線方程為_(kāi)____________________.15.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是__________16.已知直線和平面,且;①若異面,則至少有一個(gè)與相交;②若垂直,則至少有一個(gè)與垂直;對(duì)于以上命題中,所有正確的序號(hào)是___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在長(zhǎng)方體中,底面是正方形,O是的中點(diǎn),(1)證明:(2)求直線與平面所成角的正弦值18.(12分)已知等差數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)求的最大值及相應(yīng)的的值.19.(12分)如圖,正方體的棱長(zhǎng)為2,點(diǎn)為的中點(diǎn).(1)求直線與平面所成角的正弦值;(2)求點(diǎn)到平面的距離.20.(12分)如圖,在三棱錐中,是邊長(zhǎng)為2的等邊三角形,,O是BC的中點(diǎn),(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點(diǎn),當(dāng)時(shí),二面角E-BD-C大小為60°,求t的值21.(12分)已知數(shù)列的前n項(xiàng)和為,且.(1)求的通項(xiàng)公式;.(2)求數(shù)列的前n項(xiàng)和.22.(10分)冬奧會(huì)的全稱是冬季奧林匹克運(yùn)動(dòng)會(huì),是世界規(guī)模最大的冬季綜合性運(yùn)動(dòng)會(huì),每四年舉辦一屆.第24屆冬奧會(huì)將于2022年在中國(guó)北京和張家口舉行.為了弘揚(yáng)奧林匹克精神,增強(qiáng)學(xué)生的冬奧會(huì)知識(shí),廣安市某中學(xué)校從全校隨機(jī)抽取50名學(xué)生參加冬奧會(huì)知識(shí)競(jìng)賽,并根據(jù)這50名學(xué)生的競(jìng)賽成績(jī),繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學(xué)生競(jìng)賽成績(jī)的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】四個(gè)選項(xiàng)中需要分別利用對(duì)數(shù)函數(shù)的性質(zhì),向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結(jié)合知識(shí)點(diǎn),即可得出結(jié)果.【詳解】選項(xiàng)A,由于此對(duì)數(shù)函數(shù)單調(diào)遞增,并且結(jié)合對(duì)數(shù)函數(shù)定義域,即可求得結(jié)果,所以是真命題;選項(xiàng)B,向量共線,夾角可能是或,所以是假命題;選項(xiàng)C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項(xiàng)D,將點(diǎn)代入解析式,等號(hào)成立,所以是真命題;故選B.【點(diǎn)睛】本題考查命題真假的判定,根據(jù)題意結(jié)合各知識(shí)點(diǎn)即可判斷真假,需要熟練掌握對(duì)數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質(zhì).2、A【解析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積定義求解其軌跡方程即可.【詳解】設(shè),以AB中點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點(diǎn)C的軌跡是以AB中點(diǎn)為圓心,為半徑的圓.故選:A.【點(diǎn)睛】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運(yùn)算,軌跡方程的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.3、B【解析】,得不到,因?yàn)榭赡芟嘟唬灰偷慕痪€平行即可得到;,,∴和沒(méi)有公共點(diǎn),∴,即能得到;∴“”是“”的必要不充分條件.故選B考點(diǎn):必要條件、充分條件與充要條件的判斷.【方法點(diǎn)晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎(chǔ)題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項(xiàng).4、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡(jiǎn)得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A5、B【解析】設(shè),由空間向量的坐標(biāo)運(yùn)算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.6、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當(dāng)時(shí),,當(dāng)時(shí),即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.7、A【解析】根據(jù)題意和對(duì)數(shù)的運(yùn)算公式可證得為以2為首項(xiàng),2為公比的等比數(shù)列,求出,進(jìn)而得到,利用裂項(xiàng)相消法求得,再解不等式即可.【詳解】由,又,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,故,則,所以,由,得,即,有,又,所以,即n的最小值為10.故選:A8、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因?yàn)檫^(guò)點(diǎn)作于,可得,所以,故選:A.9、A【解析】由直線點(diǎn)斜式計(jì)算出直線方程.【詳解】因?yàn)橹本€過(guò)點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡(jiǎn)單.10、D【解析】根據(jù)三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,解得,然后分,討論求解.【詳解】因?yàn)槿齻€(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,所以,解得,當(dāng)時(shí),方程表示焦點(diǎn)在x軸上的橢圓,所以,所以,當(dāng)時(shí),方程表示焦點(diǎn)在y軸上的雙曲線,所以,所以,故選:D11、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.12、A【解析】設(shè),表示出,由勾股定理列式計(jì)算得,然后在,再由勾股定理列式,計(jì)算離心率.【詳解】由題意得,,且,如圖所示,設(shè),由雙曲線的定義可得,,因?yàn)?,所以,得,所以,在中,,?故選:A【點(diǎn)睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先研究一個(gè)小球從正上方落下的情況,從而可求出一個(gè)小球從正上方落下落到2號(hào)位置的概率,進(jìn)而可求出5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號(hào)位置的概率【詳解】如圖所示,先研究一個(gè)小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類(lèi)推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號(hào)位置的有4種,所以每個(gè)球落入2號(hào)位置的概率為,所以5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號(hào)位置的概率為,故答案為:14、【解析】首先判定點(diǎn)在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點(diǎn)在曲線上,而,故曲線在點(diǎn)處的切線斜率為,所以切線方程:,即,故答案為:15、【解析】根據(jù)投影向量概念求解即可.【詳解】因?yàn)榭臻g向量,,所以,,所以向量在向量上投影向量為:,故答案為:.16、①②【解析】假設(shè)與都不相交得到,得到①正確,若不垂直,上取一點(diǎn),作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點(diǎn),作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)以A為坐標(biāo)原點(diǎn),的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,令,可得的坐標(biāo),再求數(shù)量積可得答案;(2)求出平面的法向量、的坐標(biāo),由線面角的向量求法可得答案.【小問(wèn)1詳解】在長(zhǎng)方體中,以A為坐標(biāo)原點(diǎn),的方向分別為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系不妨令,則,,因?yàn)?,所以【小?wèn)2詳解】由(1)可知,,,設(shè)平面的法向量,則令,得,設(shè)直線與平面所成的角,則.18、(1)(2)當(dāng)或時(shí),有最大值是20【解析】(1)用等差數(shù)列的通項(xiàng)公式即可.(2)用等差數(shù)列的求和公式即可.【小問(wèn)1詳解】在等差數(shù)列中,∵,∴,解得,∴;【小問(wèn)2詳解】∵,∴,∴當(dāng)或時(shí),有最大值是2019、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問(wèn)1詳解】解:以點(diǎn)作坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,0,,,2,,,0,,,0,,設(shè)平面的一個(gè)法向量為,又,則,則可取,又,設(shè)直線與平面的夾角為,則,直線與平面的正弦值為;【小問(wèn)2詳解】解:因?yàn)樗渣c(diǎn)到平面的距離為,點(diǎn)到平面的距離為20、(1)證明見(jiàn)解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進(jìn)而解方程即可求出結(jié)果.【小問(wèn)1詳解】因?yàn)?,O是BC的中點(diǎn),所以,又因?yàn)?,且,平面BCD,平面BCD,所以平面BCD,因?yàn)槠矫鍭BC,所以平面平面BCD【小問(wèn)2詳解】連接OD,又因?yàn)槭沁呴L(zhǎng)為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因?yàn)锳-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設(shè)平面BCD的法向量為,,則,取平面BCD的法向量為,,,設(shè)是平面BDE的法向量,則,∴取平面BDE的法向量,解得或(舍)21、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合當(dāng)時(shí),探求數(shù)列的性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)推拿基本知識(shí)
- 燒傷功效康復(fù)和功效鍛煉課件
- 比較適合做課件背景的圖
- 《護(hù)理專業(yè)價(jià)值》課件
- 單位管理制度展示大合集【職員管理】
- 《蒙牛集團(tuán)供應(yīng)鏈》課件
- 單位管理制度收錄大全【員工管理篇】
- 《局封的臨床應(yīng)用》課件
- 單位管理制度品讀選集員工管理篇十篇
- 類(lèi)比與歸納課件
- 《義務(wù)教育法解讀》課件
- 山東省濟(jì)南市2023-2024學(xué)年高一上學(xué)期期末考試生物試題(解析版)
- 2025年工程春節(jié)停工期間安全措施
- 【頭頸】頸動(dòng)脈CTA及MRA評(píng)價(jià)課件
- 寒假安全教育
- 電力行業(yè)安全風(fēng)險(xiǎn)管理措施
- 小學(xué)一年級(jí)數(shù)學(xué)20以內(nèi)的口算題(可直接打印A4)
- 腫瘤放射治療體位固定技術(shù)
- 店鋪交割合同范例
- 新生兒心臟病護(hù)理查房
- 規(guī)劃設(shè)計(jì)行業(yè)數(shù)字化轉(zhuǎn)型趨勢(shì)
評(píng)論
0/150
提交評(píng)論