人教版七年級數(shù)學下冊-實數(shù)??碱}培優(yōu)試題_第1頁
人教版七年級數(shù)學下冊-實數(shù)常考題培優(yōu)試題_第2頁
人教版七年級數(shù)學下冊-實數(shù)??碱}培優(yōu)試題_第3頁
人教版七年級數(shù)學下冊-實數(shù)常考題培優(yōu)試題_第4頁
人教版七年級數(shù)學下冊-實數(shù)??碱}培優(yōu)試題_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、選擇題1.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,則2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,計算出1+2020+20202+20203+…+20202020的值為()A. B. C. D.2.如圖,數(shù)軸上點表示的數(shù)可能是()A. B. C. D.3.如示意圖,小宇利用兩個面積為1dm2的正方形拼成了一個面積為2dm2的大正方形,并通過測量大正方形的邊長感受了dm的大?。疄榱烁兄酂o理數(shù)的大小,小宇利用類似拼正方形的方法進行了很多嘗試,下列做法不能實現(xiàn)的是()A.利用兩個邊長為2dm的正方形感知dm的大小B.利用四個直角邊為3dm的等腰直角三角形感知dm的大小C.利用一個邊長為dm的正方形以及一個直角邊為2dm的等腰直角三角形感知dm的大小D.利用四個直角邊分別為1dm和3dm的直角三角形以及一個邊長為2dm的正方形感知dm的大小4.若的整數(shù)部分為a,小數(shù)部分為b,則a-b的值為()A. B. C. D.5.觀察下列各等式:……根據(jù)以上規(guī)律可知第11行左起第11個數(shù)是()A.-130 B.-131 C.-132 D.-1336.下列說法中,正確的個數(shù)是().()的立方根是;()的算術平方根是;()的立方根為;()是的平方根.A. B. C. D.7.如圖,數(shù)軸上兩點表示的數(shù)分別為,點B關于點A的對稱點為點C,則點C所表示的數(shù)是()A. B. C. D.8.任何一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q都是正整數(shù),且p≤q),如果p×q在n的所有分解中兩個因數(shù)之差的絕對值最小,我們就稱p×q是n的黃金分解,并規(guī)定:F(n)=,例如:18可以分解為1×18;2×9;3×6這三種,這時F(18)=,現(xiàn)給出下列關于F(n)的說法:①F(2)=;②F(24)=;③F(27)=3;④若n是一個完全平方數(shù),則F(n)=1,其中說法正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個9.有一個數(shù)陣排列如下:則第行從左至右第個數(shù)為()A. B. C. D.10.數(shù)軸上有O、A、B、C四點,各點位置與各點所表示的數(shù)如圖所示.若數(shù)線上有一點D,D點所表示的數(shù)為d,且|d﹣5|=|d﹣c|,則關于D點的位置,下列敘述正確的是?()A.在A的左邊 B.介于O、B之間C.介于C、O之間 D.介于A、C之間二、填空題11.用表示一種運算,它的含義是:,如果,那么__________.12.在研究“數(shù)字黑洞”這節(jié)課中,樂樂任意寫下了一個四位數(shù)(四數(shù)字完全相同的除外),重新排列各位數(shù)字,使其組成一個最大的數(shù)和一個最小的數(shù),然后用最大的數(shù)減去最小的數(shù),得到差:重復這個過程,……,樂樂發(fā)現(xiàn)最后將變成一個固定的數(shù),則這個固定的數(shù)是__________.13.若我們規(guī)定表示不小于x的最小整數(shù),例如,,則以下結論:①;②;③的最小值是0;④存在實數(shù)x使成立.其中正確的是______.(填寫所有正確結論的序號)14.我們可以用符號f(a)表示代數(shù)式.當a是正整數(shù)時,我們規(guī)定如果a為偶數(shù),f(a)=0.5a;如果a為奇數(shù),f(a)=5a+1.例如:f(20)=10,f(5)=26.設a1=6,a2=f(a1),a3=f(a2)…;依此規(guī)律進行下去,得到一列數(shù):a1,a2,a3,a4…(n為正整數(shù)),則2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.15.定義一種新運算,其規(guī)則是:當時,,當時,,當時,,若,則____________.16.計算并觀察下列算式的結果:,,,,…,則=_______.17.將1,,,按如圖方式排列.若規(guī)定,表示第排從左向右第個數(shù),則所表示的數(shù)是___________.18.若+(y+1)2=0,則(x+y)3=_____.19.定義運算“@”的運算法則為:x@y=,則2@6=____.20.規(guī)定:用符號[x]表示一個不大于實數(shù)x的最大整數(shù),例如:[3.69]=3,[+1]=2,[﹣2.56]=﹣3,[﹣]=﹣2.按這個規(guī)定,[﹣﹣1]=_____.三、解答題21.給定一個十進制下的自然數(shù),對于每個數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個余數(shù)按照原來的數(shù)位順序排列,得到一個新的數(shù),定義這個新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對齊,從右往左依次將相應數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進.如的“模二數(shù)”相加的運算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個數(shù)“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個22.閱讀理解:一個多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個數(shù)位相同的整數(shù),其中a代表這個整數(shù)分出來的左邊數(shù),b代表的這個整數(shù)分出來的中間數(shù),c代表這個整數(shù)分出來的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱這個多位數(shù)為等差數(shù).例如:357分成了三個數(shù)3,5,7,并且滿足:5﹣3=7﹣5;413223分成三個數(shù)41,32,23,并且滿足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個三位數(shù)是等差數(shù),試說明它一定能被3整除;(3)若一個三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.23.(概念學習)規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把n個a(a≠0)記作a?,讀作“a的圈n次方”.(初步探究)(1)直接寫出計算結果:2③=,(﹣)⑤=;(深入思考)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結果直接寫成乘方的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成乘方的形式等于;24.請觀察下列等式,找出規(guī)律并回答以下問題.,,,,……(1)按照這個規(guī)律寫下去,第5個等式是:______;第n個等式是:______.(2)①計算:.②若a為最小的正整數(shù),,求:.25.閱讀下列材料:小明為了計算的值,采用以下方法:設①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計算過程).26.數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:①,又,,∴能確定59319的立方根是個兩位數(shù).②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9.③如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3因此59319的立方根是39.(1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.①它的立方根是_______位數(shù).②它的立方根的個位數(shù)是_______.③它的立方根的十位數(shù)是__________.④195112的立方根是________.(2)請直接填寫結果:①________.②________.27.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.28.閱讀下面的文字,解答問題大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:<<,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2)請解答:(1)整數(shù)部分是,小數(shù)部分是.(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).29.定義:對任意一個兩位數(shù),如果滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.將一個“奇異數(shù)”的個位數(shù)字與十位數(shù)字對調后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調個位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計算:..(2)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且請求出這個“奇異數(shù)”(3)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且滿足,請直接寫出滿足條件的的值.30.請觀察下列等式,找出規(guī)律并回答以下問題.,,,,……(1)按照這個規(guī)律寫下去,第5個等式是:______;第n個等式是:______.(2)①計算:.②若a為最小的正整數(shù),,求:.【參考答案】***試卷處理標記,請不要刪除一、選擇題1.C解析:C【分析】由題意可知S=1+2020+20202+20203+…+20202020①,可得到2020S=2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S的值.【詳解】解:設S=1+2020+20202+20203+…+20202020①則2020S=2020+20202+20203+…+20202020+20202021②由②-①得:2019S=20202021-1∴.故答案為:C.【點晴】本題主要考查探索數(shù)與式的規(guī)律,有理數(shù)的加減混合運算.2.D解析:D【分析】先對四個選項中的無理數(shù)進行估算,再根據(jù)P點的位置即可得出結果.【詳解】解:∵1<<2,=2,3<<4,2<<3,∴根據(jù)點P在數(shù)軸上的位置可知:點P表示的數(shù)可能是,故選D.【點睛】本題主要考查了無理數(shù)的估算,能夠正確估算出無理數(shù)的范圍是解決本題的關鍵.3.C解析:C【分析】在拼圖的過程中,拼前,拼后的面積相等,所以我們只需要分別計算拼前,拼后的面積,看是否相等,就可以逐一排除.【詳解】A:,=8,不符合題意;B:4×(3×3÷2)=18,=18,不符合題意;C:,,符合題意;D:,,不符合題意.故選:C.【點睛】本題考查了利用二次根式計算面積,解題的關鍵是在拼圖的過程中,拼前,拼后的面積相等.4.A解析:A【分析】先根據(jù)無理數(shù)的估算求出a、b的值,由此即可得.【詳解】,,即,,,故選:A.【點睛】本題考查了無理數(shù)的估算,熟練掌握估算方法是解題關鍵.5.C解析:C【分析】通過觀察發(fā)現(xiàn):每一行等式右邊的數(shù)就是行數(shù)的平方,故第n行右邊的數(shù)就是n的平方,而左起第一個數(shù)的絕對值比右側的數(shù)大1,并且左邊的項數(shù)是行數(shù)的2倍,前一半的符號為負,后一半的符號為正.【詳解】解:第一行:;第二行:;第三行:;第四行:;……第n行:;∴第11行:.∵左起第一個數(shù)的絕對值比右側的數(shù)大1,并且左邊的項數(shù)是行數(shù)的2倍,前一半的符號為負,后一半的符號為正.∴第11行左起第1個數(shù)是-122,第11個數(shù)是-132.故選:C.【點睛】此題主要考查探索數(shù)與式的規(guī)律,正確找出規(guī)律是解題關鍵.6.C解析:C【詳解】根據(jù)立方根的意義,可知,故()對;根據(jù)算術平方根的性質,可知的算術平方根是,故()錯;根據(jù)立方根的意義,可知的立方根是,故()對;根據(jù)平方根的意義,可知是的平方根.故()對;故選C.7.D解析:D【分析】設點C的坐標是x,根據(jù)題意列得,求解即可.【詳解】解:∵點A是B,C的中點.∴設點C的坐標是x,則,則,∴點C表示的數(shù)是.故選:D.【點睛】此題考查數(shù)軸上兩點的中點的計算公式:兩點的中點所表示的數(shù)等于兩點所表示的數(shù)的平均數(shù),正確掌握計算公式是解題的關鍵.8.B解析:B【分析】將2,24,27,n分解為兩個正整數(shù)的積的形式,再找到相差最少的兩個數(shù),讓較小的數(shù)除以較大的數(shù)進行排除即可.【詳解】解:∵2=1×2,∴F(2)=,故①正確;∵24=1×24=2×12=3×8=4×6,且4和6的差絕對值最小∴F(24)=,故②是錯誤的;∵27=1×27=3×9,且3和9的絕對值差最小∴F(27)=,故③錯誤;∵n是一個完全平方數(shù),∴n能分解成兩個相等的數(shù)的積,則F(n)=1,故④是正確的.正確的共有2個.故答案為B.【點睛】本題考查有理數(shù)的混合運算與信息獲取能力,解決本題的關鍵是弄清題意、理解黃金分解的定義.9.B解析:B【解析】試題解析:尋找每行數(shù)之間的關系,抓住每行之間的公差成等差數(shù)列,便知第20行第一個數(shù)為210,而每行的公差為等差數(shù)列,則第20行第10個數(shù)為426,故選B.10.B解析:B【分析】借助O、A、B、C的位置以及絕對值的定義解答即可.【詳解】解:-5<c<0,b=5,|d﹣5|=|d﹣c|∴BD=CD,∴D點介于O、B之間.故答案為B.【點睛】本題考查了實數(shù)、絕對值和數(shù)軸等相關知識,掌握實數(shù)和數(shù)軸上的點一一對應是解答本題的關鍵.二、填空題11.【分析】按照新定義的運算法先求出x,然后再進行計算即可.【詳解】解:由解得:x=8故答案為.【點睛】本題考查了新定義運算和一元一次方程,解答的關鍵是根據(jù)定義解一元一次方程,求得x的解析:【分析】按照新定義的運算法先求出x,然后再進行計算即可.【詳解】解:由解得:x=8故答案為.【點睛】本題考查了新定義運算和一元一次方程,解答的關鍵是根據(jù)定義解一元一次方程,求得x的值.12.6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-

1234=

3087,8730-378=

8352

,8532一2358=

617解析:6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-

1234=

3087,8730-378=

8352

,8532一2358=

6174,6174是符合條件的4位數(shù)中唯一會產生循環(huán)的(7641-1467=

6174)

這個在數(shù)學上被稱之為卡普耶卡(Kaprekar)猜想.【詳解】任選四個不同的數(shù)字,組成一個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),用所得的結果的四位數(shù)重復上述的過程,最多七步必得6174,如1234,4321-1234

=3087,8730

-378

=

8352,8532-2358=

6174,這一現(xiàn)象在數(shù)學上被稱之為卡普耶卡(Kaprekar)猜想,故答案為:6174.【點睛】此題考查數(shù)字的規(guī)律運算,正確理解題意通過計算發(fā)現(xiàn)規(guī)律并運用解題是關鍵.13.③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結論錯誤②,則,結論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結論正確④若,則此時,因此,存在實解析:③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結論錯誤②,則,結論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結論正確④若,則此時,因此,存在實數(shù)x使成立,結論正確綜上,正確的是③④故答案為:③④.【點睛】本題考查了新定義下的實數(shù)運算,理解新定義是解題關鍵.14.7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結論解析:7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結論.【詳解】解:觀察,發(fā)現(xiàn)規(guī)律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴數(shù)列a1,a2,a3,a4…(n為正整數(shù))每7個數(shù)一循環(huán),∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案為7.【點睛】本題考查了規(guī)律型中的數(shù)字的變化類以及代數(shù)式求值,解題的關鍵是根據(jù)數(shù)的變化找出變換規(guī)律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0來解決問題.15.或﹣5【分析】根據(jù)新定義運算法則,分情況討論求解即可.【詳解】解:當x>﹣2時,則有,解得:,成立;當x=﹣2時,則有,解得:x=3,矛盾,舍去;當x<﹣2時,則有,解得:x=﹣5,成立解析:或﹣5【分析】根據(jù)新定義運算法則,分情況討論求解即可.【詳解】解:當x>﹣2時,則有,解得:,成立;當x=﹣2時,則有,解得:x=3,矛盾,舍去;當x<﹣2時,則有,解得:x=﹣5,成立,綜上,x=或﹣5,故答案為:或﹣5.【點睛】本題考查新定義下的實數(shù)運算、解一元一次方程,理解新定義運算法則,運用分類討論思想正確列出方程是解答的關鍵.16.5050【分析】通過對被開方數(shù)的計算和分析,發(fā)現(xiàn)數(shù)字間的規(guī)律,然后利用二次根式的性質進行化簡計算求解.【詳解】解:第1個算式:,第2個算式:,第3個算式:,第4個算式:,...,第解析:5050【分析】通過對被開方數(shù)的計算和分析,發(fā)現(xiàn)數(shù)字間的規(guī)律,然后利用二次根式的性質進行化簡計算求解.【詳解】解:第1個算式:,第2個算式:,第3個算式:,第4個算式:,...,第n個算式:,∴當n=100時,,故答案為:5050.【點睛】本題考查了有理數(shù)的運算,二次根式的化簡,通過探索發(fā)現(xiàn)數(shù)字間的規(guī)律是解題關鍵.17.【分析】根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列解析:【分析】根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【詳解】解:(7,3)表示第7排從左向右第3個數(shù),可以看出奇數(shù)排最中間的一個數(shù)都是1,1+2+3+4+5+6+3=24,24÷4=6,則(7,3)所表示的數(shù)是,故答案為.【點睛】此題主要考查了數(shù)字的變化規(guī)律,這類題型在中考中經常出現(xiàn).判斷出所求的數(shù)是第幾個數(shù)是解決本題的難點;得到相應的變化規(guī)律是解決本題的關鍵.18.0【分析】根據(jù)非負數(shù)的性質列式求出x、y,然后代入代數(shù)式進行計算即可得解.【詳解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根據(jù)非負數(shù)的性質列式求出x、y,然后代入代數(shù)式進行計算即可得解.【詳解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案為:0.【點睛】本題考查了非負數(shù)的性質.解題的關鍵是掌握非負數(shù)的性質:幾個非負數(shù)的和為0時,這幾個非負數(shù)都為0.19.4【分析】把x=2,y=6代入x@y=中計算即可.【詳解】解:∵x@y=,∴2@6==4,故答案為4.【點睛】本題考查了有理數(shù)的運算能力,注意能由代數(shù)式轉化成有理數(shù)計算的式子.解析:4【分析】把x=2,y=6代入x@y=中計算即可.【詳解】解:∵x@y=,∴2@6==4,故答案為4.【點睛】本題考查了有理數(shù)的運算能力,注意能由代數(shù)式轉化成有理數(shù)計算的式子.20.-5【詳解】∵3<<4,∴?4<?<?3,∴?5<??1<?4,∴[??1]=?5.故答案為?5.點睛:本題考查了估算無理數(shù)的大小的應用,解決此題的關鍵是求出的范圍.解析:-5【詳解】∵3<<4,∴?4<?<?3,∴?5<??1<?4,∴[??1]=?5.故答案為?5.點睛:本題考查了估算無理數(shù)的大小的應用,解決此題的關鍵是求出的范圍.三、解答題21.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計算和12+23,65+23,97+23的值,即可得出答案②設兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進行討論,從而得出與“模二相加不變”的兩位數(shù)的個數(shù)【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當此兩位數(shù)小于77時,設兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,;當a為偶數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有12個(28、48、68不符合)當a為偶數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個當a為奇數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當a為奇數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有16個,(18、38、58不符合)當此兩位數(shù)大于等于77時,符合共有4個綜上所述共有12+6+16+4=38故答案為:38【點睛】本題考查新定義,數(shù)字的變化類,認真觀察、仔細思考,分類討論的數(shù)學思想是解決這類問題的方法.能夠理解定義是解題的關鍵.22.(1)不是,是;(2)見解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設這個三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因為,所以可確定a、c為偶數(shù)時b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設這個三位數(shù)是M,,∵,∴,∵,∴這個等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當35a也是偶數(shù)時才有可能是8的倍數(shù),∴或4或6或8,當時,,此時若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當時不符合題意;當時,,此時若,則,若,則,(144、152是8的倍數(shù)),當時,,此時若,則,若,則,(216、244是8的倍數(shù)),當時,,此時若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時b才有意義,∴和是c是奇數(shù)均不符合題意,當時,,當時,,當時,,當時,,當時,,綜上,T為432或456或840或864或888.【點睛】本題考查新定義下的實數(shù)運算、有理數(shù)混合運算,整式的加減運算,能夠結合倍數(shù)的特點及熟練掌握整數(shù)的奇偶性是解題關鍵.23.初步探究:(1),-8;深入思考:(1)(?)2,()4,;(2)【分析】初步探究:(1)分別按公式進行計算即可;深入思考:(1)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結果;(2)結果前兩個數(shù)相除為1,第三個數(shù)及后面的數(shù)變?yōu)椋瑒t;【詳解】解:初步探究:(1)2③=2÷2÷2=,;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(?)2=(?)2;5⑥=5÷5÷5÷5÷5÷5=()4;同理可得:(﹣)⑩=;(2)【點睛】本題是有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學生的閱讀理解能力;注意:負數(shù)的奇數(shù)次方為負數(shù),負數(shù)的偶數(shù)次方為正數(shù),同時也要注意分數(shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.24.(1),;(2)①;②【分析】(1)根據(jù)規(guī)律可得第5個算式;根據(jù)規(guī)律可得第n個算式;(2)①根據(jù)運算規(guī)律可得結果.②利用非負數(shù)的性質求出與的值,代入原式后拆項變形,抵消即可得到結果.【詳解】(1)根據(jù)規(guī)律得:第5個等式是,第n個等式是;(2)①,,,;②為最小的正整數(shù),,,,原式,,,,.【點睛】本題主要考查了數(shù)字的變化規(guī)律,發(fā)現(xiàn)規(guī)律,運用規(guī)律是解答此題的關鍵.25.(1);(2);(3)【分析】(1)設式子等于s,將方程兩邊都乘以2后進行計算即可;(2)設式子等于s,將方程兩邊都乘以3,再將兩個方程相減化簡后得到答案;(3)設式子等于s,將方程兩邊都乘以a后進行計算即可.【詳解】(1)設s=①,∴2s=②,②-①得:s=,故答案為:;(2)設s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點睛】此題考查代數(shù)式的規(guī)律計算,能正確理解已知的代數(shù)式的運算規(guī)律是難點,依據(jù)規(guī)律對于每個式子變形計算是關鍵.26.(1)①兩;②8;③5;④58;(2)①24;②56.【分析】(1)①根據(jù)例題進行推理得出答案;②根據(jù)例題進行推理得出答案;③根據(jù)例題進行推理得出答案;④根據(jù)②③得出答案;(2)①先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結論;②先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結論.【詳解】(1)①,,∴,∴能確定195112的立方根是一個兩位數(shù),故答案為:兩;②∵195112的個位數(shù)字是2,又∵,∴能確定195112的個位數(shù)字是8,故答案為:8;③如果劃去195112后面三位112得到數(shù)195,而,∴,可得,由此能確定195112的立方根的十位數(shù)是5,故答案為:5;④根據(jù)②③可得:19511

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論