浙江省麗水四校 2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第1頁
浙江省麗水四校 2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第2頁
浙江省麗水四校 2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第3頁
浙江省麗水四校 2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第4頁
浙江省麗水四校 2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省麗水四校2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),那么的值為()A. B.C. D.2.已知,若,是第二象限角,則=()A. B.5C. D.103.已知向量,,且,則實數(shù)等于()A.1 B.2C. D.4.設(shè)實數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.85.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.11346.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.38.命題的否定是()A. B.C. D.9.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.610.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.甲、乙兩名同學(xué)同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館12.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與,若,則實數(shù)a的值為______14.圓關(guān)于y軸對稱的圓的標準方程為___________.15.若點為圓上的一個動點,則點到直線距離的最大值為________16.計算:________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點的個數(shù).18.(12分)在等差數(shù)列中,已知公差,前項和(其中)(1)求;(2)求和:19.(12分)新冠肺炎疫情發(fā)生以來,我國某科研機構(gòu)開展應(yīng)急科研攻關(guān),研制了一種新型冠狀病毒疫苗,并已進入二期臨床試驗.根據(jù)普遍規(guī)律,志愿者接種疫苗后體內(nèi)會產(chǎn)生抗體,人體中檢測到抗體,說明有抵御病毒的能力.通過檢測,用表示注射疫苗后的天數(shù),表示人體中抗體含量水平(單位:,即:百萬國際單位/毫升),現(xiàn)測得某志愿者的相關(guān)數(shù)據(jù)如下表所示:天數(shù)123456抗體含量水平510265096195根據(jù)以上數(shù)據(jù),繪制了散點圖.(1)根據(jù)散點圖判斷,與(a,b,c,d均為大于0的實數(shù))哪一個更適宜作為描述y與x關(guān)系的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果求出y關(guān)于x的回歸方程,并預(yù)測該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測數(shù)據(jù)中隨機抽取4天的數(shù)據(jù)作進一步的分析,記其中的y值大于50的天數(shù)為X,求X的分布列與數(shù)學(xué)期望.參考數(shù)據(jù):3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經(jīng)過點,,,,的線性回歸方程的系數(shù)公式,;.20.(12分)已知公差不為零的等差數(shù)列的前項和為,,,成等比數(shù)列且滿足________.請在①;②;③,這三個條件中任選一個補充在上面題干中,并回答以下問題.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)已知向量,(1)求;(2)求;(3)若(),求的值22.(10分)已知函數(shù)為常數(shù),函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)的圖象與直線相切,求實數(shù)的值;(3)當時,在上有兩個極值點且恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】直接求導(dǎo),代入計算即可.【詳解】,故.故選:D.2、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D3、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C4、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經(jīng)過點時有最小值,由得,所以的最小值為.故選:B.5、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.6、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.7、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A8、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C9、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C10、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點睛】本題考查直線方程的斜截式,屬于基礎(chǔ)題11、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A12、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點睛】(1)本題主要考查向量的線性運算和空間向量垂直的坐標表示,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:14、【解析】根據(jù)題意可得圓心坐標為,半徑為1,利用平面直角坐標系點關(guān)于坐標軸對稱特征可得所求的圓心坐標為,半徑為1,進而得出結(jié)果.【詳解】由題意知,圓的圓心坐標為,半徑為1,設(shè)圓關(guān)于y軸對稱的圓為,所以,半徑為1,所以的標準方程為.故答案為:15、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計算作答.【詳解】圓的圓心,半徑,點C到直線的距離,所以圓C上點P到直線l距離的最大值為.故答案為:716、【解析】根據(jù)無窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點;或時函數(shù)有且只有一個零點;時,函數(shù)有兩個零點.【解析】(1)先對函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負,求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點,由,得.令,則.或時,,時,,所以在和上都是減函數(shù),在上是增函數(shù),時取極小值,又當時,.所以時,關(guān)于的方程無解,或時關(guān)于的方程只有一個解,時,關(guān)于的方程有兩個不同解.因此,時函數(shù)沒有零點,或時函數(shù)有且只有一個零點,時,函數(shù)有兩個零點.【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點,解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,考查數(shù)形結(jié)合的思想,屬于中檔題18、(1)12(2)18【解析】(1)根據(jù)已知的,利用等差數(shù)列的通項公式和前n項和公式即可列式求解;(2)由第(1)問中求解出的的通項公式,要求前12項絕對值的和,可以發(fā)現(xiàn),該數(shù)列前6項為正項,后6項為負項,因此在算和的時候,后6項和可以取原通項公式的相反數(shù)即可計算,即為,然后再加上前6項和,即為要求的前12項絕對值的和.【小問1詳解】由題意可得,在等差數(shù)列中,已知公差,前項和所以,解之得,所以n=12【小問2詳解】由(1)可知數(shù)列{an}的通項公式為,所以即19、(1)(2),4023.87(3)分布列答案見解析,數(shù)學(xué)期望:【解析】(1)由于這些點分布在一條曲線的附近,從而可選出回歸方程,(2)設(shè),,則建立w關(guān)于x的回歸方程,然后根據(jù)公式和表中的數(shù)據(jù)求解回歸方程即可,再將代入回歸方程可求得在注射疫苗后的第10天的抗體含量水平值,(3)由題意可知x的可能取值為0,1,2,然后求對應(yīng)的概率,從而可求出分布列和期望【小問1詳解】根據(jù)散點圖可知這些點分布在一條曲線的附近,所以更適合作為描述y與x關(guān)系的回歸方程類型.【小問2詳解】設(shè),變換后可得,設(shè),建立w關(guān)于x的回歸方程,,所以所以w關(guān)于x的回歸方程為,所以,當時,,即該志愿者在注射疫苗后的第10天的抗體含量水平值約為4023.87miu/mL.【小問3詳解】由表格數(shù)據(jù)可知,第5,6天的y值大于50,故x的可能取值為0,1,2,,,,X的分布列為012.20、(1)答案見解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項和公差,即可求得的通項公式;(2)求得的通項公式,結(jié)合裂項相消法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解得,所以數(shù)列的通項公式為選②:由,可得,即,所以,解得,所以;選③:由,可得,即,所以,解得,所以;【小問2詳解】由(1)可得,所以.21、(1)(2)(3)【解析】(1)根據(jù)向量數(shù)量積的坐標表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運算律即可得解.【小問1詳解】解:;【小問2詳解】解:;【小問3詳解】解:因為,所以,即,解得.22、(1)答案見解析;(2)7;(3)【解析】(1)根據(jù)題意求得,討論,,,時解,即可得出函數(shù)的單調(diào)區(qū)間;(2)設(shè)切點為則結(jié)合,得令通過求導(dǎo)研究單調(diào)性解得進而解出的值.(3)由已知可得解析式,觀察有,求導(dǎo)得原題意可轉(zhuǎn)化為函數(shù)在上有兩個不同零點.結(jié)合根分布可得,函數(shù)的兩個極值點為是在上的兩個不同零點可得且,代入函數(shù)中令通過單調(diào)性求出進而可得答案.【詳解】解:(1),令,解得:①當時,由得,由得,在上單調(diào)遞減,在上單調(diào)遞增;②當時,由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增;③當時,恒成立,所以上單調(diào)遞增.④當時,由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增.綜上:①當時,在上單調(diào)遞減,在上單調(diào)遞增;②當時,在上單調(diào)遞減,在上單調(diào)遞增;③當時,在上單調(diào)遞增.④當時,在上單調(diào)遞減,在上單調(diào)遞增.(2)設(shè)切點為則(*),由可得(**),聯(lián)立(*)(**)可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論