版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津七中2023年數(shù)學高二上期末綜合測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若構(gòu)成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,2.在等差數(shù)列{an}中,a1=2,a5=3a3,則a3等于()A.-2 B.0C.3 D.63.如果,那么下面一定成立的是()A. B.C. D.4.把紅、黑、藍、白4張紙牌隨機地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”的關(guān)系是()A.既不互斥也不對立 B.互斥又對立C.互斥但不對立 D.對立5.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.126.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館7.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)8.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)9.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.10.設(shè)圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.11.已知向量,若,則()A. B.5C.4 D.12.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則________14.已知雙曲線的右焦點為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點.若(O為坐標原點),則雙曲線C的離心率為___________.15.已知函數(shù)是定義域上的單調(diào)遞增函數(shù),是的導數(shù)且為定義域上的單調(diào)遞減函數(shù),請寫出一個滿足條件的函數(shù)的解析式___________16.設(shè)函數(shù),則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列各項均不為零,為其前項和,點在函數(shù)的圖像上.(1)求的通項公式;(2)若數(shù)列滿足,求的前項和;(3)若數(shù)列滿足,求的前項和的最大值、最小值.18.(12分)已知函數(shù)的兩個極值點之差的絕對值為.(1)求的值;(2)若過原點的直線與曲線在點處相切,求點的坐標.19.(12分)已知橢圓C的中心在原點,焦點在x軸上,焦距為2,離心率為(1)求橢圓C的方程;(2)設(shè)直線l經(jīng)過點M(0,1),且與橢圓C交于A,B兩點,若,求直線l的方程20.(12分)在對某老舊小區(qū)污水分流改造時,需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價為400元/平方米,中間兩道隔墻的建造單價為248元/平方米,池底的建造單價為80元/平方米,池蓋的建造單價為100元/平方米,建造此污水處理池相關(guān)人員的勞務費以及其他費用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計算時忽略不計)(1)現(xiàn)有財政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設(shè)計污水處理池的長和寬,使總費用最低?最低費用為多少萬元?21.(12分)已知函數(shù)(Ⅰ)求的單調(diào)區(qū)間和最值;(Ⅱ)設(shè),證明:當時,22.(10分)如圖,在空間直角坐標系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當E為AB的中點時,求直線AC與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對于A,由,所以,,共面;對于B,由,所以,,共面;對于D,,所以,,共面,故選:C.2、A【解析】利用已知條件求得,由此求得.【詳解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故選:A.3、C【解析】根據(jù)不等式的基本性質(zhì),以及特例法和作差比較法,逐項計算,即可求解.【詳解】對于A中,當時,,所以不正確;對于B中,因為,根據(jù)不等式的性質(zhì),可得,對于C中,由,可得可得,所以,所以正確;對于D中,由,可得,則,所以,所以不正確.故選:C.4、C【解析】根據(jù)互斥事件、對立事件的定義可得答案.【詳解】把紅、黑、藍、白4張紙牌隨機地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”不能同時發(fā)生,但能同時不發(fā)生,所以它們的關(guān)系是互斥但不對立.故選:C.5、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.6、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A7、C【解析】求出函數(shù)的導函數(shù),通過在某點處的導數(shù)為該點處切線的斜率,求出切線方程,并且判斷出極值,通過結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因為,,所以曲線在點處的切線方程為,故A錯;當時,存在使,且當時,;當時,,即有極小值,無極大值,故B錯誤;設(shè)為的極值點,則,且,所以,,當時,;當時,,故C正確,D錯誤.8、B【解析】由導數(shù)求得的最小值,由最小值非負可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B9、C【解析】根據(jù)題意,設(shè)拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設(shè)拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C10、C【解析】求出圓心到直線距離,再借助圓的性質(zhì)求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C11、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B12、D【解析】根據(jù)雙曲線標準方程與漸近線的關(guān)系即可求解.【詳解】當雙曲線焦點在x軸上時,漸近線為,故離心率為;當雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】將代入計算,利用和互為相反數(shù),作差可得,計算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時成立.故答案為:.14、【解析】過F作,利用點到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關(guān)系求解.【詳解】如圖,過F作,則E是AB中點,設(shè)漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點睛】本題考查雙曲線離心率的求解,解題的關(guān)鍵是分別表示出,,由建立關(guān)系.15、(答案不唯一)【解析】由題意可得0,結(jié)合在定義域上為減函數(shù)可取.【詳解】因為在定義域為單調(diào)增函數(shù)所以在定義域上0,又因為在定義域上為減函數(shù),且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).16、【解析】由的導數(shù)為,將代入,即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)最大值為,最小值為【解析】(1)將點代入函數(shù)解析再結(jié)合前和即可求解;(2)運用錯位相減法或分組求和法都可以求解;(3)將數(shù)列的通項變形為,再求和,通過分類討論從單調(diào)性上分析求解即可.【小問1詳解】因為點在函數(shù)的圖像上,所以,又數(shù)列是等差數(shù)列,所以,即所以,;【小問2詳解】解法1:,==,解法2:,①,②①-②得,;【小問3詳解】記的前n項和為,則=,當n為奇數(shù)時隨著n的增大而減小,可得,當n為偶數(shù)時隨著n增大而增大,可得,所以的最大值為,最小值為.18、(1);(2).【解析】(1)求,設(shè)的兩根分別為,,由韋達定理可得:,,由題意知,進而可得的值;再檢驗所求的的值是否符合題意即可;(2)設(shè),則,由列關(guān)于的方程,即可求得的值,進而可得的值,即可得點的坐標.【詳解】由可得:設(shè)的兩根分別為,,則,,由題意可知:,即,所以解得:,當時,,由可得或,由可得,所以在單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,所以為極大值點,為極小值點,滿足兩個極值點之差的絕對值為,符合題意,所以.(2)由(1)知,,設(shè),則,由題意可得:,即,整理可得:,解得:或,因為即為坐標原點,不符合題意,所以,則,所以.19、(1);(2)或【解析】(1)根據(jù)橢圓的焦距為2,離心率為,求出,,即可求橢圓的方程;(2)設(shè)直線方程為,代入橢圓方程,由得,利用韋達定理,化簡可得,求出,即可求直線的方程.試題解析:(1)設(shè)橢圓方程為,因為,所以,所求橢圓方程為.(2)由題得直線l的斜率存在,設(shè)直線l方程為y=kx+1,則由得,且.設(shè),則由得,又,所以消去得,解得,,所以直線的方程為,即或.20、(1)不夠;(2)將污水處理池建成長為16.2米,寬為10米時,建造總費用最低,最低費用為90000元.【解析】(1)根據(jù)題意結(jié)合單價直接計算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長為(米),建造總費用為:(元)因為,所以如果污水處理池的寬建成9米,那么9萬元的撥款是不夠用的.【小問2詳解】設(shè)污水處理池的寬為米,建造總費用為元,則污水處理池的長為米.則因為,等號僅當,即時成立,所以時建造總費用取最小值90000,所以將污水處理池建成長為16.2米,寬為10米時,建造總費用最低,最低費用為90000元.21、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;最小值為,無最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導函數(shù)的正負即可確定單調(diào)區(qū)間,由單調(diào)性可得最值點;(Ⅱ)構(gòu)造函數(shù),利用導數(shù)可確定單調(diào)性,結(jié)合的正負可確定的零點的范圍,進而得到結(jié)論.【詳解】(Ⅰ)由題意得:定義域為,,當時,;當時,;的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為的最小值為,無最大值(Ⅱ)設(shè),則,令得:當時,;當時,,在上單調(diào)遞增;在上單調(diào)遞減由(Ⅰ)知:,可得:,,可得:,即又,當時,,即當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高標準土方車租賃服務合同3篇
- 2025年度學校食堂食品安全管理及供餐合同3篇
- 物業(yè)和門面簽的安全合同責任書
- 彩盒制作知識
- 2025年度股權(quán)質(zhì)押工商登記合同模板規(guī)范
- 2025年度稅務代理與納稅申報服務合同
- 二零二五年度互聯(lián)網(wǎng)企業(yè)股份收購合同范本
- 二零二五年度消防員勞務派遣與消防安全檢查及技術(shù)支持合同
- 2025年度企業(yè)財務報表分析與應用合同
- 2025年度酒店特色文化體驗區(qū)轉(zhuǎn)讓合同
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 基本藥物制度政策培訓課件
- 2025年中國華能集團限公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 建筑勞務專業(yè)分包合同范本(2025年)
- GB/T 45002-2024水泥膠砂保水率測定方法
- 廣東省廣州海珠區(qū)2023-2024學年八年級上學期期末數(shù)學試卷(含答案)
- 飛行原理(第二版) 課件 第10章 高速空氣動力學基礎(chǔ)
- 央國企信創(chuàng)白皮書 -基于信創(chuàng)體系的數(shù)字化轉(zhuǎn)型
- GB/T 36964-2018軟件工程軟件開發(fā)成本度量規(guī)范
- 機加車間各崗位績效考核方案
評論
0/150
提交評論