版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
徐州市2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點為,則()A.-4 B.-10C.4 D.102.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為()A. B.0C.6 D.83.記等差數(shù)列的前n項和為,若,,則等于()A.5 B.31C.38 D.414.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.5.設(shè),則的一個必要不充分條件為()A. B.C. D.6.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為7.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.368.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件9.如圖,正四棱柱是由四個棱長為1的小正方體組成的,是它的一條側(cè)棱,是它的上底面上其余的八個點,則集合的元素個數(shù)()A.1 B.2C.4 D.810.曲線y=lnx在點M處的切線過原點,則該切線的斜率為()A.1 B.eC.-1 D.11.已知,且,則實數(shù)的值為()A. B.3C.4 D.612.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.14.已知向量,,不共線,點在平面內(nèi),若存在實數(shù),,,使得,那么的值為________.15.一個質(zhì)地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨立事件;③F與G是對立事件;④F與G是獨立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)16.設(shè)橢圓,點在橢圓上,求該橢圓在P處的切線方程______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正方體中,是棱的中點.(1)試判斷直線與平面的位置關(guān)系,并說明理由;(2)求證:直線面.18.(12分)已知函數(shù)R)(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;(2)求的單調(diào)區(qū)間19.(12分)已知橢圓(a>b>0)的右焦點為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點,M,N分別為線段AF2,BF2的中點,若坐標(biāo)原點O在以MN為直徑的圓上,且<e≤,求k的取值范圍.20.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實數(shù)a的取值范圍(2)若是方程的兩個不相等的實數(shù)根,證明:21.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時,求函數(shù)在時的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)關(guān)于平面對稱的點的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點關(guān)于平面的對稱點的坐標(biāo),再利用向量的坐標(biāo)運算求.【詳解】解:由題意,關(guān)于平面對稱的點橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點關(guān)于對稱的點的坐標(biāo)為(2,?1,-3).故選:A【點睛】本題以空間直角坐標(biāo)系為載體,考查點關(guān)于面的對稱,考查數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題2、C【解析】畫出可行域,利用幾何意義求出目標(biāo)函數(shù)最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當(dāng)目標(biāo)函數(shù)經(jīng)過點時,目標(biāo)函數(shù)取得最大值.故選:C3、A【解析】設(shè)等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設(shè)等差數(shù)列的公差為d,由題知:,解得.故選:A.4、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因為,所以,解得故選:C5、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.6、B【解析】把橢圓方程化為標(biāo)準(zhǔn)方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標(biāo)準(zhǔn)方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.7、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達(dá)到輸出條件即可.8、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時,成立,反過來,當(dāng)時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎(chǔ)題型.9、A【解析】用空間直角坐標(biāo)系看正四棱柱,根據(jù)向量數(shù)量積進(jìn)行計算即可.【詳解】建立空間直角坐標(biāo)系,為原點,正四棱柱的三個邊的方向分別為軸、軸和看軸,如右圖示,,設(shè),則AB所以集合,元素個數(shù)為1.故選:A.10、D【解析】設(shè)出點坐標(biāo),結(jié)合導(dǎo)數(shù)列方程,由此求得切點坐標(biāo)并求得切線的斜率.【詳解】設(shè)切點為,,故在點的切線的斜率為,所以,所以切點為,切線的斜率為.故選:D11、B【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計算作答.詳解】因,且,則有,解得,所以實數(shù)的值為3.故選:B12、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5814、1【解析】通過平面向量基本定理推導(dǎo)出空間向量基本定理得推論.【詳解】因為點在平面內(nèi),則由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,從而.故答案為:115、②③【解析】由對立和互斥事件的定義判斷①③;由獨立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨立事件;,,則F與G不是獨立事件故答案為:②③16、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)平面AEC,理由見解析(2)證明見解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問1詳解】連接BD,設(shè),連接OE.在中,O、E分別是BD、的中點,則.因為直線OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.18、(1)(2)答案見解析【解析】(1)根據(jù)切點處的導(dǎo)數(shù)等于切線斜率,切點在曲線上可得切線方程;(2)求導(dǎo),分類討論可得.【小問1詳解】當(dāng)時,,,,則,所以在處的切線方程為【小問2詳解】,,當(dāng)時,,函數(shù)在R上單調(diào)遞增;當(dāng)時,令,則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增當(dāng)時,的單調(diào)遞增區(qū)間為,當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為19、(1);(2)【解析】(1)根據(jù)右焦點為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點,且坐標(biāo)原點O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因為a2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因為(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因為<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結(jié)合韋達(dá)定理得出斜率k與離心率e的關(guān)系.20、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,參變分離后,轉(zhuǎn)化為求函數(shù)的最值,即可求得實數(shù)的取值范圍;(2)將方程的實數(shù)根代入方程,再變形得到,利用分析法,轉(zhuǎn)化為證明,通過換元,構(gòu)造函數(shù),轉(zhuǎn)化為利用導(dǎo)數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設(shè),,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數(shù)根,即又2個不同實數(shù)根,且,,得,即,所以,不妨設(shè),則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以,,所以,即,即得【點睛】本題考查利用導(dǎo)數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導(dǎo)數(shù)中的雙變量問題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過構(gòu)造函數(shù),結(jié)合函數(shù)的導(dǎo)數(shù),即可證明.21、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導(dǎo)可得:,可知當(dāng)時,時,,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當(dāng)時,恒成立;當(dāng)時,對恒成立,可變形為:對恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時,,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時,令,得,當(dāng)時,在上單調(diào)遞增,當(dāng)時,在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.22、(1)最大值為9,最小值為;(2).【解析】(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而確定在的極值、端點值,比較它們的大小即可知最值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運營商銷售服務(wù)合作協(xié)議
- 生態(tài)修復(fù)工程軟基施工方案
- 2025月嫂服務(wù)合同范本
- 2025年水泵工安全技術(shù)規(guī)程(2篇)
- 2025年校長開學(xué)典禮發(fā)言稿范例(2篇)
- 森林防火工作方案樣本(3篇)
- 一般電焊工安全技術(shù)操作規(guī)程范文(2篇)
- 采購主管崗位職責(zé)(3篇)
- 潛水作業(yè)組組長安全職責(zé)(2篇)
- 天然氣切割安全操作規(guī)程范文(2篇)
- (完整word版)Word信紙(A4橫條直接打印版)模板
- 鋼結(jié)構(gòu)件運輸專項方案
- 物業(yè)公司車輛進(jìn)出登記表
- DCS基礎(chǔ)培訓(xùn)課程(和利時)課件
- 員工消防安全教育培訓(xùn)
- HART-375手操器說明書
- 文學(xué)批評與實踐-四川大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- (52)-12.1服裝的審美形態(tài)11.4
- 力行“五育”并舉融合“文化”育人
- 上海中心大廈介紹
- 管道試壓記錄表
評論
0/150
提交評論