上海市閔行區(qū)2023年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
上海市閔行區(qū)2023年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
上海市閔行區(qū)2023年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
上海市閔行區(qū)2023年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
上海市閔行區(qū)2023年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市閔行區(qū)2023年高二上數(shù)學(xué)期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.42.設(shè),直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,4.已知橢圓的離心率,為橢圓上的一個動點,若定點,則的最大值為A. B.C. D.5.已知是虛數(shù)單位,若,則復(fù)數(shù)z的虛部為()A.3 B.-3iC.-3 D.3i6.已知直線和圓相交于兩點.若,則的值為()A. B.C. D.7.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎(chǔ)上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術(shù)記遺》,其中有云:“珠算控帶四時,經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F(xiàn)在從個位和十位這兩組中隨機選擇往下?lián)芤涣I现椋蠐?粒下珠,得到的數(shù)為質(zhì)數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.8.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.9.焦點坐標為的拋物線的標準方程是()A. B.C. D.10.已知向量,,,若,則實數(shù)()A. B.C. D.11.若直線經(jīng)過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.12.的展開式中的系數(shù)是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點分別為,,O為坐標原點,點M是雙曲線左支上的一點,若,,則雙曲線的離心率是____________14.設(shè)集合,把集合中的元素按從小到大依次排列,構(gòu)成數(shù)列,求數(shù)列的前項和___15.已知、雙曲線的左、右焦點,A、B為雙曲線上關(guān)于原點對稱的兩點,且滿足,,則雙曲線的離心率為___________.16.已知拋物線C:的焦點為F,準線為l,過點F斜率為的直線與拋物線C交于點M(M在x軸的上方),過M作于點N,連接NF交拋物線C于點Q,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,底面是正方形,O是的中點,(1)證明:(2)求直線與平面所成角的正弦值18.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由19.(12分)已知等差數(shù)列的前項和為,,.(1)求的通項公式;(2)設(shè)數(shù)列的前項和為,用符號表示不超過x的最大數(shù),當時,求的值.20.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)求數(shù)列的前項和.21.(12分)已知數(shù)列的前項和為,若.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)已知函數(shù)(1)求的單調(diào)區(qū)間;(2)若,求的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B2、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.3、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.4、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點的坐標為,則,故:,當時,.本題選擇C選項.【點睛】本題主要考查橢圓方程問題,橢圓中的最值問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.5、C【解析】由復(fù)數(shù)的除法運算可得答案.【詳解】由題得,所以復(fù)數(shù)z的虛部為-3.故選:C.6、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.7、B【解析】根據(jù)古典概型概率計算公式,計算出所求的概率.【詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質(zhì)數(shù)的有:17,71,53,故所求事件的概率為故選:B8、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).9、D【解析】依次確定選項中各個拋物線的焦點坐標即可.【詳解】對于A,的焦點坐標為,A錯誤;對于B,的焦點坐標為,B錯誤;對于C,焦點坐標為,C錯誤;對于D,的焦點坐標為,D正確.故選:D.10、C【解析】先根據(jù)題意求出,然后再根據(jù)得出,最后通過計算得出結(jié)果.【詳解】因為,,所以,又,,所以,即,解得.故選:.【點睛】本題主要考查向量數(shù)量積的坐標運算及向量垂直的相關(guān)性質(zhì),熟記運算法則即可,屬于常考題型.11、D【解析】應(yīng)用兩點式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D12、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【詳解】設(shè)雙曲線的焦距為,則,因為,所以,因為,不妨設(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.14、【解析】由等差數(shù)列和等比數(shù)列的通項公式,可得,由不在集合中,在集合中,也在集合中,推得不在數(shù)列的前50項內(nèi),則數(shù)列的前50項中包括的前48項和數(shù)列中的3和27,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由題意,集合構(gòu)成數(shù)列是首項為1,公差為4的等差數(shù)列,集合構(gòu)成數(shù)列是首項為1,公比為3的等比數(shù)列,可得,又由不在集合中,在集合中,也在集合中,因為,解得,此時,所以不在數(shù)列的前50項內(nèi),則數(shù)列的前50項的和為.故答案為:.15、【解析】可得四邊形為矩形,運用三角函數(shù)的定義可得,,由雙曲線的定義和矩形的性質(zhì),可得,由離心率公式求解即可.【詳解】、為雙曲線的左、右焦點,可得四邊形為矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案為:.【點睛】關(guān)鍵點點睛:得出四邊形為矩形,利用雙曲線的定義解決焦點三角形問題.16、【解析】由題意畫出圖形,寫出直線的方程,與拋物線方程聯(lián)立求出的坐標,進一步求出的坐標,求得即可求解【詳解】解:如圖,由拋物線,得,,則,與拋物線聯(lián)立得,解得、,,,,,為等邊三角形,,過作軸的垂線交軸于,設(shè),,,,,在拋物線上,,解得,,,,則,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)以A為坐標原點,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,令,可得的坐標,再求數(shù)量積可得答案;(2)求出平面的法向量、的坐標,由線面角的向量求法可得答案.【小問1詳解】在長方體中,以A為坐標原點,的方向分別為x,y,z軸的正方向,建立如圖所示的空間直角坐標系不妨令,則,,因為,所以【小問2詳解】由(1)可知,,,設(shè)平面的法向量,則令,得,設(shè)直線與平面所成的角,則.18、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設(shè)點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以19、(1)(2)9【解析】(1)首先根據(jù)已知條件分別求出的首項和公差,然后利用等差數(shù)列的通項公式求解即可;(2)首先利用等差數(shù)列求和公式求出,然后利用裂項相消法和分組求和法求出,進而可求出的通項公式,最后利用等差數(shù)列求和公式求解即可.【小問1詳解】不妨設(shè)等差數(shù)列的公差為,故,,解得,,從而,即的通項公式為.【小問2詳解】由題意可知,,所以,故,因為當時,;當時,,所以,由可知,,即,解得,即值為9.20、(1);(2).【解析】(1)由,,可得求出,從而可得的通項公式;(2)由(1)可得,從而可得,然后利用裂項相消求和法可求得【詳解】解:(1)設(shè)等差數(shù)列的公差為,因為,.所以,化簡得,解得,所以,(2)由(1)可知,所以,所以【點睛】此題考查等差數(shù)列前項和的基本量計算,考查裂項相消求和法的應(yīng)用,考查計算能力,屬于基礎(chǔ)題21、(1)(2)【解析】(1)根據(jù)所給條件先求出首項,然后仿寫,作差即可得到的通項公式;(2)根據(jù)(1)求出的通項公式,觀察是由一個等差數(shù)列加上一個等比數(shù)列得到,要求其前項和,采用分組求和法結(jié)合公式法可求出前項和【小問1詳解】當時,,解得;當時,,∴,化簡得,∴是首項為1,公比為2的等比數(shù)列,∴,因此的通項公式為.【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論