版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省韓城市司馬遷中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱(chēng)為三角形的“歐拉線”.若滿(mǎn)足,頂點(diǎn),且其“歐拉線”與圓相切,則:①.圓M上的點(diǎn)到原點(diǎn)的最大距離為②.圓M上存在三個(gè)點(diǎn)到直線的距離為③.若點(diǎn)在圓M上,則的最小值是④.若圓M與圓有公共點(diǎn),則上述結(jié)論中正確的有()個(gè)A.1 B.2C.3 D.42.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=03.若則()A.?2 B.?1C.1 D.24.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.5.橢圓C:的焦點(diǎn)為,,點(diǎn)P在橢圓上,若,則的面積為()A.48 B.40C.28 D.246.俗話說(shuō)“好貨不便宜,便宜沒(méi)好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件7.《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題:從冬至起,接下來(lái)依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿(mǎn)、芒種共十二個(gè)節(jié)氣,其日影長(zhǎng)依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個(gè)節(jié)氣的日影長(zhǎng)之和為25.5尺,且前九個(gè)節(jié)氣日影長(zhǎng)之和為85.5尺,則立春的日影長(zhǎng)為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺8.關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為A. B.C. D.9.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.4510.已知等比數(shù)列滿(mǎn)足,,則()A.21 B.42C.63 D.8411.如圖,在三棱柱中,E,F(xiàn)分別是BC,中點(diǎn),,則()A.B.C.D.12.如圖,P是橢圓第一象限上一點(diǎn),A,B,C是橢圓與坐標(biāo)軸的交點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)A作AN平行于直線BP交y軸于N,直線CP交x軸于M,直線BP交x軸于E.現(xiàn)有下列三個(gè)式子:①;②;③.其中為定值的所有編號(hào)是()A.①③ B.②③C.①② D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.“學(xué)習(xí)強(qiáng)國(guó)”學(xué)習(xí)平臺(tái)是由中宣部主管,以深入學(xué)習(xí)宣傳新時(shí)代中國(guó)特色社會(huì)主義思想為主要內(nèi)容,立足全體黨員,面向全社會(huì)的優(yōu)質(zhì)平臺(tái),現(xiàn)日益成為老百姓了解國(guó)家動(dòng)態(tài),緊跟時(shí)代脈搏的熱門(mén)APP,某市宣傳部門(mén)為了解全民利用“學(xué)習(xí)強(qiáng)國(guó)”了解國(guó)家動(dòng)態(tài)的情況,從全市抽取2000名人員進(jìn)行調(diào)查,統(tǒng)計(jì)他們每周利用“學(xué)習(xí)強(qiáng)國(guó)”的時(shí)長(zhǎng),下圖是根據(jù)調(diào)查結(jié)果繪制的頻率分布直方圖(1)根據(jù)上圖,求所有被抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的平均時(shí)長(zhǎng)和中位數(shù);(2)宣傳部為了了解大家利用“學(xué)習(xí)強(qiáng)國(guó)”的具體情況,準(zhǔn)備采用分層抽樣的方法從和組中抽取50人了解情況,則兩組各抽取多少人?再利用分層抽樣從抽取的50入中選5人參加一個(gè)座談會(huì),現(xiàn)從參加座談會(huì)的5人中隨機(jī)抽取兩人發(fā)言,求小組中至少有1人發(fā)言的概率?14.已知直線與直線平行,則實(shí)數(shù)______15.某部門(mén)計(jì)劃對(duì)某路段進(jìn)行限速,為調(diào)查限速60km/h是否合理,對(duì)通過(guò)該路段的300輛汽車(chē)的車(chē)速進(jìn)行檢測(cè),將所得數(shù)據(jù)按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車(chē)中車(chē)速低于限速60km/h的汽車(chē)有______輛.16.圍棋是一種策略性?xún)扇似孱?lèi)游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說(shuō)明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.18.(12分)已知橢圓的離心率為,過(guò)左焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)為橢圓的長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),證明為定值.19.(12分)在等差數(shù)列中,記為數(shù)列的前項(xiàng)和,已知:.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的的值.20.(12分)2020年3月20日,中共中央、國(guó)務(wù)院印發(fā)了《關(guān)于全面加強(qiáng)新時(shí)代大中小學(xué)勞動(dòng)教育的意見(jiàn)》(以下簡(jiǎn)稱(chēng)《意見(jiàn)》),《意見(jiàn)》中確定了勞動(dòng)教育內(nèi)容要求,要求普通高中要注重圍繞豐富職業(yè)體驗(yàn),開(kāi)展服務(wù)性勞動(dòng)、參加生產(chǎn)勞動(dòng),使學(xué)生熟練掌握一定勞動(dòng)技能,理解勞動(dòng)創(chuàng)造價(jià)值,具有勞動(dòng)自立意識(shí)和主動(dòng)服務(wù)他人、服務(wù)社會(huì)的情懷.我市某中學(xué)鼓勵(lì)學(xué)生暑假期間多參加社會(huì)公益勞動(dòng),在實(shí)踐中讓學(xué)生利用所學(xué)知識(shí)技能,服務(wù)他人和社會(huì),強(qiáng)化社會(huì)責(zé)任感,為了調(diào)查學(xué)生參加公益勞動(dòng)的情況,學(xué)校從全體學(xué)生中隨機(jī)抽取100名學(xué)生,經(jīng)統(tǒng)計(jì)得到他們參加公益勞動(dòng)的總時(shí)間均在15~65小時(shí)內(nèi),其數(shù)據(jù)分組依次為:,,,,,得到頻率分布直方圖如圖所示,其中(1)求,的值,估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間的平均數(shù)(同一組中的每一個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);(2)學(xué)校要在參加公益勞動(dòng)總時(shí)間在、這兩組的學(xué)生中用分層抽樣的方法選取5人進(jìn)行感受交流,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行感受分享,求這2人來(lái)自不同組的概率21.(12分)設(shè)函數(shù)(I)求曲線在點(diǎn)處的切線方程;(II)設(shè),若函數(shù)有三個(gè)不同零點(diǎn),求c的取值范圍22.(10分)已知函數(shù)(1)求的圖象在點(diǎn)處的切線方程;(2)求在上的最大值與最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點(diǎn)的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點(diǎn)與定點(diǎn)連線的斜率判斷C;由兩個(gè)圓有公共點(diǎn)可得圓心距與兩個(gè)半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點(diǎn)坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點(diǎn)的距離為,則圓上的點(diǎn)到原點(diǎn)的最大距離為,故①錯(cuò)誤;圓心到直線的距離為,圓上存在三個(gè)點(diǎn)到直線的距離為,故②正確;的幾何意義:圓上的點(diǎn)與定點(diǎn)連線的斜率,設(shè)過(guò)與圓相切的直線方程為,即,由,解得,的最小值是,故③錯(cuò)誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點(diǎn),則圓心距的范圍為,,,解得,故④錯(cuò)誤故選:A2、D【解析】設(shè)切點(diǎn)為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點(diǎn)為,因?yàn)?,所以切線的斜率為因?yàn)榍€f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D3、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.4、B【解析】直接利用空間向量基本定理求解即可【詳解】因?yàn)樵谄叫辛骟w中,,,,所以,故選:B5、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計(jì)算作答.【詳解】橢圓C:的半焦距,長(zhǎng)半軸長(zhǎng),由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D6、A【解析】將“好貨”與“不便宜”進(jìn)行相互推理即可求得答案.【詳解】根據(jù)題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.7、B【解析】設(shè)影長(zhǎng)依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式求出首項(xiàng)和公差,即可得出答案.【詳解】解:設(shè)影長(zhǎng)依次成等差數(shù)列,公差為,則,前9項(xiàng)之和,即,解得,所以立春的日影長(zhǎng)為.故選:B.8、B【解析】設(shè),解集為所以二次函數(shù)圖像開(kāi)口向下,且與交點(diǎn)為,由韋達(dá)定理得所以的解集為,故選B.9、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,則.故選:B.10、D【解析】設(shè)等比數(shù)列公比為q,根據(jù)給定條件求出即可計(jì)算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D11、D【解析】根據(jù)空間向量線性運(yùn)算的幾何意義進(jìn)行求解即可.【詳解】,故選:D12、D【解析】根據(jù)斜率的公式,可以得到的值是定值,然后結(jié)合已知逐一判斷即可.【詳解】設(shè),所以有,,因此,所以有,,,,,,故,,.故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用斜率公式得到之間的關(guān)系是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、(1)平均時(shí)長(zhǎng)為,中位數(shù)為(2)在和兩組中分別抽取30人和20人,概率【解析】(1)由頻率分布直方圖計(jì)算平均數(shù),中位數(shù)的公式即可求解;(2)先根據(jù)分層抽樣求出每一組抽取的人數(shù),再列舉抽取總事件個(gè)數(shù),從而利用古典概型概率計(jì)算公式即可求解【小問(wèn)1詳解】解:(1)設(shè)被抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的平均時(shí)長(zhǎng)為,中位數(shù)為,,被抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的時(shí)長(zhǎng)中位數(shù)滿(mǎn)足,解得,即抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的平均時(shí)長(zhǎng)為6.8,中位數(shù)為【小問(wèn)2詳解】解:組的人數(shù)為人,設(shè)抽取的人數(shù)為,組的人數(shù)為人,設(shè)抽取的人數(shù)為,則,解得,,所以在和兩組中分別抽取30人和20人,再利用分層抽樣從抽取的50入中抽取5人,兩組分別抽取3人和2人,將組中被抽取的工作人員標(biāo)記為,,,將中的標(biāo)記為,,則抽取的情況如下:,,,,,,,,,,,,,,,,,,,共10種情況,其中在中至少抽取1人有7種,故所求概率14、【解析】分類(lèi)討論,兩種情況,結(jié)合直線平行的知識(shí)得出實(shí)數(shù).【詳解】當(dāng)時(shí),直線與直線垂直;當(dāng)時(shí),,則且,解得.故答案為:15、①.②.【解析】根據(jù)個(gè)小矩形面積之和為1即可求出的值;根據(jù)頻率分布直方圖可以求出車(chē)速低于限速60km/h的頻率,從而可求出汽車(chē)有多少輛【詳解】由解得:這300輛汽車(chē)中車(chē)速低于限速60km/h的汽車(chē)有故答案為:;16、【解析】根據(jù)互斥事件與對(duì)立事件概率公式求解即可【詳解】設(shè)“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對(duì)立事件,所以因?yàn)?粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)見(jiàn)解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識(shí),考查空間想象能力、分析問(wèn)題的能力、計(jì)算能力.第一問(wèn),利用線面平行的定理,先證明線線平行,再證明線面平行;第二問(wèn),可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長(zhǎng)AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個(gè)點(diǎn).理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說(shuō)明:延長(zhǎng)AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過(guò)點(diǎn)A作AH⊥CE,交CE的延長(zhǎng)線于點(diǎn)H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過(guò)A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點(diǎn),以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點(diǎn):線線平行、線面平行、向量法.18、(1);(2)證明見(jiàn)解析.【解析】(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運(yùn)用直線與橢圓的位置關(guān)系探求.試題解析:(1)由,可得橢圓方程.(2)設(shè)的方程為,代入并整理得:.設(shè),,則,同理則.所以,是定值.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程幾何性質(zhì)及直線與橢圓的位置關(guān)系等有關(guān)知識(shí)的綜合運(yùn)用【易錯(cuò)點(diǎn)晴】本題考查的是橢圓的標(biāo)準(zhǔn)方程等基礎(chǔ)知識(shí)及直線與橢圓的位置關(guān)系等知識(shí)的綜合性問(wèn)題.解答本題的第一問(wèn)時(shí),直接依據(jù)題設(shè)條件運(yùn)用橢圓的幾何性質(zhì)和橢圓的有關(guān)概念建立方程組,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程為;第二問(wèn)的求解過(guò)程中,先設(shè)直線的方程為,再借助二次方程中根與系數(shù)之間的關(guān)系,依據(jù)坐標(biāo)之間的關(guān)系進(jìn)行計(jì)算探求,從而使得問(wèn)題獲解.19、(1);(2)或.【解析】(1)根據(jù)給定條件求出數(shù)列的公差及首項(xiàng)即可計(jì)算作答.(2)由(1)求出,建立方程求解作答.【小問(wèn)1詳解】設(shè)等差數(shù)列公差為,因,則,解得,于是得,所以數(shù)列的通項(xiàng)公式為:.【小問(wèn)2詳解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.20、(1),;平均數(shù)為40.2;(2)【解析】(1)根據(jù)矩形面積和為1,求的值,再根據(jù)頻率分布直方圖求平均數(shù);(2)首先利用分層抽樣,在中抽取3人,在中抽取2人,再編號(hào),列舉基本事件,求概率,或者利用組合公式,求古典概
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高一學(xué)生學(xué)習(xí)計(jì)劃
- 好玩的游戲幼兒園戶(hù)外小班教案
- 公司季度工作計(jì)劃合集7篇
- 500ta多晶硅、16kta三氯氫硅新建可行性研究報(bào)告-圖文
- 競(jìng)聘衛(wèi)生演講稿范文合集7篇
- 國(guó)慶閱兵觀后感
- 小學(xué)五年級(jí)教學(xué)工作計(jì)劃大全
- 學(xué)生年度學(xué)習(xí)計(jì)劃
- 小松機(jī)械制造(山東)有限公司HD系列重卡生產(chǎn)項(xiàng)目環(huán)評(píng)報(bào)告表
- 交通安全保證書(shū)模板集錦10篇
- 校園自動(dòng)售貨機(jī)投標(biāo)書(shū)模板
- Word使用技巧培訓(xùn)課件下載兩篇
- 加強(qiáng)對(duì)道路交通違法行為的打擊力度維護(hù)社會(huì)秩序
- 初中學(xué)生網(wǎng)絡(luò)安全教育(完美版)課件兩篇
- 報(bào)價(jià)單(報(bào)價(jià)單模板)
- 2023教學(xué)工作檢查評(píng)估總結(jié)
- 銅排設(shè)計(jì)技術(shù)規(guī)范
- 英國(guó)文學(xué)史及選讀復(fù)習(xí)要點(diǎn)總結(jié)
- 貴州省貴陽(yáng)市花溪區(qū)2023-2024學(xué)年數(shù)學(xué)三年級(jí)第一學(xué)期期末聯(lián)考試題含答案
- 整改回復(fù)書(shū)樣板后邊附帶圖片
- 中小學(xué)校園人車(chē)分流方案模板
評(píng)論
0/150
提交評(píng)論