山西省呂梁學(xué)院附中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題含解析_第1頁
山西省呂梁學(xué)院附中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題含解析_第2頁
山西省呂梁學(xué)院附中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題含解析_第3頁
山西省呂梁學(xué)院附中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題含解析_第4頁
山西省呂梁學(xué)院附中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省呂梁學(xué)院附中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線過雙曲線:的右焦點,在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點,若∠OPQ=90°(O為坐標原點),則OPQ內(nèi)切圓的半徑為()A. B.C.1 D.2.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.3.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()A. B.C. D.4.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°5.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標原點,則最大值為()A.3 B.4C.5 D.66.設(shè)雙曲線的實軸長為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.7.已知命題p:,,則命題p的否定為()A., B.,C, D.,8.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%9.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則10.已知動直線的傾斜角的取值范圍是,則實數(shù)m的取值范圍是()A. B.C. D.11.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形12.已知點到直線:的距離為1,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長方體中,體對角線與平面,平面,平面所成的角分別為,則可以類比得到的結(jié)論為___________________.14.已知數(shù)列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為____________.15.在空間直角坐標系中,點到x軸的距離為___________.16.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某雙曲線型自然冷卻通風塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標系的基礎(chǔ)上,保持原點和x軸、y軸不變,建立空間直角坐標系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標,并證明此時線段PQ上任意一點都在曲面上.18.(12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,O為底面正方形ABCD對角線的交點,E為PD的中點,且PA=AD.(1)求證:PB∥平面EAC;(2)求直線BD與平面EAC所成角的正弦值.19.(12分)已知直線l的斜率為-2,且與兩坐標軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程20.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)若在上恒成立,求取值范圍.21.(12分)已知中心在坐標原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內(nèi)的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數(shù)k,存在實數(shù)m,使得,求實數(shù)m的取值范圍.22.(10分)已知拋物線C:y2=2px(p>0)的焦點為F,P(5,a)為拋物線C上一點,且|PF|=8(1)求拋物線C的方程;(2)過點F的直線l與拋物線C交于A,B兩點,以線段AB為直徑的圓過Q(0,﹣3),求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)漸近線的對稱性,結(jié)合銳角三角函數(shù)定義、正切的二倍角公式、直角三角形內(nèi)切圓半徑公式進行求解即可.【詳解】由雙曲線標準方程可知:,雙曲線的漸近線方程為:,因此,因為∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設(shè)OPQ內(nèi)切圓的半徑為,于是有:,即,故選:B【點睛】關(guān)鍵點睛:利用三角形內(nèi)切圓的性質(zhì)是解題的關(guān)鍵.2、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.3、C【解析】設(shè),用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當時,取得最小值,從而求得點的坐標.【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當λ=時,取得最小值,此時==,即點Q的坐標為.故選:C4、B【解析】利用直線的方向向量求出其斜率,進而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B5、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.6、D【解析】雙曲線的實軸長為,漸近線方程為,代入解析式即可得到結(jié)果.【詳解】雙曲線的實軸長為8,即,,漸近線方程為,進而得到雙曲線方程為.故選:D.7、A【解析】根據(jù)特稱命題的否定是全稱命題,結(jié)合已知條件,即可求得結(jié)果.【詳解】因為命題p:,,故命題p的否定為:,.故選:A.8、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.9、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質(zhì)可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D10、B【解析】根據(jù)傾斜角與斜率的關(guān)系可得,即可求m的范圍.【詳解】由題設(shè)知:直線斜率范圍為,即,可得.故選:B.11、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.12、D【解析】利用點到直線的距離公式,即可求得參數(shù)的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由線面角的定義得到,再計算的值即可得到結(jié)論【詳解】在長方體中,連接,在長方體中,平面,所以對角線與平面所成的角為,對角線與平面所成的角為,對角線與平面所成的角為,顯然,,,所以,,故答案為:14、【解析】先求出,然后當時,由,得,兩式相減可求出,再驗證,從而可得數(shù)列為等比數(shù)列,進而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實數(shù)的取值范圍【詳解】當時,,得,當時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數(shù)列是以為公比,為首項的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數(shù)的取值范圍為故答案為:【點睛】關(guān)鍵點點睛:此題考查數(shù)列通項公的求法,等比數(shù)列求和公式的應(yīng)用,考查不等式恒成立問題,解題的關(guān)鍵是求出數(shù)列的通項公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題15、【解析】由空間直角坐標系中點到軸的距離為計算可得【詳解】解:空間直角坐標系中,點到軸的距離為故答案為:16、【解析】結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設(shè)雙曲線的標準方程為,易知,設(shè),,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設(shè),,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設(shè)雙曲線的標準方程為,由題意知,點,的橫坐標分別為,,則設(shè)點,的坐標為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數(shù));點在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當時,,當時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉(zhuǎn)任意坐標系上的雙曲線的交點,旋轉(zhuǎn)直角坐標系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.18、(1)證明見解析(2)【解析】(1)利用線面平行的判斷定理,證明線線平行,即可證明;(2)建立空間直角坐標系,求平面的法向量,利用公式,即可求解.【小問1詳解】連結(jié)EO,由題意可得O為BD的中點,又E是PD的中點,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小問2詳解】如圖,以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,設(shè)AD=2,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),設(shè)平面EAC的法向量為=(x,y,z),則,即,即,令y=1得x=-1,z=-1,∴平面EAC的一個法向量為=(-1,1,-1),∴設(shè)直線BD與平面EAC所成的角為θ,則sinθ=∴直線BD與平面EAC所成的角的正弦值.19、【解析】先根據(jù)題意設(shè)直線方程,由條件求出直線的方程,再根據(jù)條件列出等量關(guān)系,求出圓心和半徑,進而求得答案.【詳解】解:設(shè)直線l的方程為y=-2x+b(b>0),它與兩坐標軸的正半軸的交點依次為,,因為直線l與兩坐標軸的正半軸所圍成的三角形的面積等于1,所以,解得b=2,所以直線l的方程是,即由題意,可設(shè)圓C的圓心為,半徑為r,又因為圓C被x軸截得的弦長等于4,所以①,由于直線與圓相切,所以圓心C到直線的距離②,所以①②聯(lián)立得:,解得:或,又圓心在第四象限,所以,則圓心,,所以圓C方程是.20、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結(jié)果;(2)二次函數(shù)的恒成立問題需要對二次項系數(shù)是否為0進行分類討論,即可求出結(jié)果.【詳解】(1)當時,,即,解得或,所以,解集為或.(2)因為在上恒成立,①當時,恒成立;②當時,,解得,綜上,的取值范圍為.21、(1)1(2)或(3)【解析】(1)由已知可得,,再結(jié)合可求出,從而可求得橢圓方程,(2)設(shè)直線,代入橢圓方程中消去,解方程可求出點的坐標,從而可得NT中點的坐標,而,可得解方程可求出的值,即可得到直線NT的方程,(3)設(shè)直線,代入橢圓方程中消去,利用根與系數(shù)的關(guān)系結(jié)合直線的斜率公式可得,再由,可求出m的取值范圍【小問1詳解】設(shè)(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以橢圓方程為1.【小問2詳解】由題C,0),設(shè)直線聯(lián)立得,那么

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論