人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第05講 平面向量的數(shù)量積(一)(含解析)_第1頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第05講 平面向量的數(shù)量積(一)(含解析)_第2頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第05講 平面向量的數(shù)量積(一)(含解析)_第3頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第05講 平面向量的數(shù)量積(一)(含解析)_第4頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第05講 平面向量的數(shù)量積(一)(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第5課平面向量的數(shù)量積(一)目標(biāo)導(dǎo)航目標(biāo)導(dǎo)航課程標(biāo)準(zhǔn)課標(biāo)解讀1.了解向量數(shù)量積的物理背景,即物體在力F的作用下產(chǎn)生位移s所做的功.2.掌握向量數(shù)量積的定義及投影向量.3.會(huì)計(jì)算平面向量的數(shù)量積.1、通過(guò)閱讀課本在向量前面知識(shí)學(xué)習(xí)的基礎(chǔ)上進(jìn)一步了解向量數(shù)量積的物理背景,即物體在力F的作用下產(chǎn)生位移s所做的功.2、理解和掌握向量數(shù)量積的定義與投影向量的概念與意義.3、在認(rèn)真學(xué)習(xí)的基礎(chǔ)上,深刻掌握平面向量數(shù)量積的意義,為后續(xù)學(xué)習(xí)空間向量數(shù)量積打好基礎(chǔ).知識(shí)精講知識(shí)精講知識(shí)點(diǎn)01兩向量的夾角與垂直1.夾角:已知兩個(gè)非零向量a,b,O是平面上的任意一點(diǎn),作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則∠AOB=θ(0≤θ≤π)叫做向量a與b的夾角(如圖所示).當(dāng)θ=0時(shí),a與b同向;當(dāng)θ=π時(shí),a與b反向.2.垂直:如果a與b的夾角是eq\f(π,2),則稱a與b垂直,記作a⊥b.【即學(xué)即練1】已知|a|=|b|=2,且a與b的夾角為60°,則a+b與a的夾角是多少?a-b與a的夾角又是多少?解析如圖所示,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,且∠AOB=60°.以eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→))為鄰邊作平行四邊形OACB,則eq\o(OC,\s\up6(→))=a+b,eq\o(BA,\s\up6(→))=a-b.因?yàn)閨a|=|b|=2,所以平行四邊形OACB是菱形,又∠AOB=60°,所以eq\o(OC,\s\up6(→))與eq\o(OA,\s\up6(→))的夾角為30°,eq\o(BA,\s\up6(→))與eq\o(OA,\s\up6(→))的夾角為60°.即a+b與a的夾角是30°,a-b與a的夾角是60°.反思感悟求兩個(gè)向量夾角的關(guān)鍵是利用平移的方法使兩個(gè)向量起點(diǎn)重合,作兩個(gè)向量的夾角,按照“一作二證三算”的步驟求出.知識(shí)點(diǎn)02向量數(shù)量積的定義已知兩個(gè)非零向量a,b,它們的夾角為θ,我們把數(shù)量|a|·|b|cosθ叫做向量a與b的數(shù)量積(或內(nèi)積),記作a·b,即a·b=|a||b|cosθ.規(guī)定:零向量與任一向量的數(shù)量積為0.思考若a≠0,且a·b=0,是否能推出b=0?答案在實(shí)數(shù)中,若a≠0,且a·b=0,則b=0;但是在數(shù)量積中,若a≠0,且a·b=0,不能推出b=0.因?yàn)槠渲衋有可能垂直于b.【即學(xué)即練2】若|a|=3,|b|=4,a,b的夾角為135°,則a·b等于()A.-3eq\r(2) B.-6eq\r(2)C.6eq\r(2) D.2答案B知識(shí)點(diǎn)03投影向量1.如圖,設(shè)a,b是兩個(gè)非零向量,eq\o(AB,\s\up6(→))=a,eq\o(CD,\s\up6(→))=b,我們考慮如下的變換:過(guò)eq\o(AB,\s\up6(→))的起點(diǎn)A和終點(diǎn)B,分別作eq\o(CD,\s\up6(→))所在直線的垂線,垂足分別為A1,B1,得到eq\o(A1B1,\s\up6(→)),我們稱上述變換為向量a向向量b的投影,eq\o(A1B1,\s\up6(→))叫做向量a在向量b上的投影向量.2.如圖,在平面內(nèi)任取一點(diǎn)O,作eq\o(OM,\s\up6(→))=a,eq\o(ON,\s\up6(→))=b,過(guò)點(diǎn)M作直線ON的垂線,垂足為M1,則eq\o(OM1,\s\up6(→))就是向量a在向量b上的投影向量.設(shè)與b方向相同的單位向量為e,a與b的夾角為θ,則eq\o(OM1,\s\up6(→))與e,a,θ之間的關(guān)系為eq\o(OM1,\s\up6(→))=|a|cosθe.【即學(xué)即練3】(1)已知|a|=12,|b|=8,a·b=24,求a在b上的投影向量.解析∵a·b=|a||b|cosθ,∴cosθ=eq\f(a·b,|a||b|)=eq\f(24,12×8)=eq\f(1,4),∴a在b上的投影向量為|a|cosθ·eq\f(b,|b|)=12×eq\f(1,4)×eq\f(1,8)b=eq\f(3,8)b.(2)已知||=6,||=3,·=-12,則向量在向量方向上的投影向量的長(zhǎng)度為()A.-4 B.4C.-2 D.2答案B解析根據(jù)投影向量的定義,設(shè),的夾角為,可得向量在方向上的投影向量的長(zhǎng)度是|||cos|==4.故選B.知識(shí)點(diǎn)04平面向量數(shù)量積的性質(zhì)設(shè)向量a與b都是非零向量,它們的夾角為θ,e是與b方向相同的單位向量.則(1)a·e=e·a=|a|cosθ.(2)a⊥b?a·b=0.(3)當(dāng)a∥b時(shí),a·b=eq\b\lc\{\rc\(\a\vs4\al\co1(|a||b|,a與b同向,,-|a||b|,a與b反向.))特別地,a·a=|a|2或|a|=eq\r(a·a).(4)|a·b|≤|a||b|.【即學(xué)即練4】(多選)下列說(shuō)法正確的是()A.向量a在向量b上的投影向量可表示為eq\f(a·b,|b|)·eq\f(b,|b|)B.若a·b<0,則a與b的夾角θ的范圍是eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),π))C.若△ABC是等邊三角形,則eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))的夾角為60°D.若a·b=0,則a⊥b答案AB解析對(duì)于選項(xiàng)A,根據(jù)投影向量的定義,知A正確;對(duì)于選項(xiàng)B,∵a·b=|a||b|cosθ<0,則cosθ<0,又∵0≤θ≤π,∴θ∈eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),π)),故B正確;對(duì)于選項(xiàng)C,若△ABC是等邊三角形,則eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))的夾角為120°,故C錯(cuò)誤;對(duì)于選項(xiàng)D,a·b=0?a⊥b或a=0或b=0,故D錯(cuò)誤.能力拓展能力拓展考法01向量的夾角【典例1】在銳角SKIPIF1<0中,關(guān)于向量夾角的說(shuō)法,正確的是(

)A.SKIPIF1<0與SKIPIF1<0的夾角是銳角B.SKIPIF1<0與SKIPIF1<0的夾角是銳角C.SKIPIF1<0與SKIPIF1<0的夾角是鈍角D.SKIPIF1<0與SKIPIF1<0的夾角是銳角【答案】B【詳解】SKIPIF1<0為銳角三角形,A,SKIPIF1<0與SKIPIF1<0的夾角是鈍角,A錯(cuò)誤;B,SKIPIF1<0與SKIPIF1<0的夾角是銳角,B正確;C,SKIPIF1<0與SKIPIF1<0的夾角是銳角,C錯(cuò)誤;D,SKIPIF1<0與SKIPIF1<0的夾角是鈍角,D錯(cuò)誤.故選:B【變式訓(xùn)練】在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D是AC的中點(diǎn),則SKIPIF1<0與SKIPIF1<0的夾角為_(kāi)_____.【答案】SKIPIF1<0【詳解】如圖,SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的夾角等于SKIPIF1<0.故答案為:SKIPIF1<0.考法02求兩向量的數(shù)量積【典例2】若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的夾角為135°,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12【答案】B【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的夾角為135°,所以SKIPIF1<0,故選:B反思感悟定義法求平面向量的數(shù)量積若已知兩向量的模及其夾角,則直接利用公式a·b=|a|·|b|cosθ.運(yùn)用此法計(jì)算數(shù)量積的關(guān)鍵是確定兩個(gè)向量的夾角,條件是兩向量的起點(diǎn)必須重合,否則,要通過(guò)平移使兩向量符合以上條件.【變式訓(xùn)練】.已知SKIPIF1<0在SKIPIF1<0方向上的投影為SKIPIF1<0,則SKIPIF1<0的值為A.3 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【詳解】設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0SKIPIF1<0故選:B.考法03投影向量【典例3】(多選)八卦是中國(guó)文化的基本哲學(xué)概念,如圖1船八卦模型圖,其平面圖形記為圖2中的正八邊形SKIPIF1<0,其中SKIPIF1<0,則下列結(jié)論正確的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0在SKIPIF1<0向量上的投影為SKIPIF1<0【答案】ABC【詳解】因?yàn)榘诉呅蜸KIPIF1<0是正八邊形,且SKIPIF1<0,所以SKIPIF1<0,對(duì)于A:SKIPIF1<0與SKIPIF1<0之間的夾角為SKIPIF1<0,SKIPIF1<0,故選項(xiàng)A正確;對(duì)于B:SKIPIF1<0與SKIPIF1<0之間的夾角為SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)B正確;對(duì)于C:因?yàn)镾KIPIF1<0,SKIPIF1<0且?jiàn)A角相等,由數(shù)量積的定義知SKIPIF1<0,故選項(xiàng)C正確;對(duì)于D:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0向量上的投影為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0向量上的投影不是SKIPIF1<0,胡選項(xiàng)D不正確;故選:ABC.反思感悟投影向量的求法(1)向量a在向量b上的投影向量為|a|cosθe(其中e為與b同向的單位向量),它是一個(gè)向量,且與b共線,其方向由向量a和b的夾角θ的余弦值決定.(2)向量a在向量b上的投影向量為|a|cosθeq\f(b,|b|).【變式訓(xùn)練】已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在向量SKIPIF1<0上的投影為(

)A.SKIPIF1<0 B.3 C.4 D.5【答案】A【詳解】設(shè)SKIPIF1<0的夾角為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0方向上的投影為SKIPIF1<0故選:A.分層提分分層提分題組A基礎(chǔ)過(guò)關(guān)練1.已知向量與SKIPIF1<0的夾角為,且,若,且,,則實(shí)數(shù)的值為A. B. C. D.【答案】D【詳解】SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.2.若向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由已知得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C.3.已知向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的夾角SKIPIF1<0.故選:C4.已知SKIPIF1<0,SKIPIF1<0是兩個(gè)互相垂直的單位向量,則向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0是兩個(gè)互相垂直的單位向量,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0.故選:B5.如圖,在平面四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】延長(zhǎng)SKIPIF1<0,SKIPIF1<0交于點(diǎn)SKIPIF1<0,如圖所示,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0,故選:B.6.在四邊形ABCD中,若SKIPIF1<0,則該四邊形為(

)A.平行四邊形 B.矩形 C.等腰梯形 D.菱形【答案】B【詳解】由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0∥SKIPIF1<0,所以四邊形ABCD為平行四邊形,又SKIPIF1<0,所以SKIPIF1<0.所以四邊形ABCD為矩形故選:B7.SKIPIF1<0,SKIPIF1<0是SKIPIF1<0所在平面上的兩點(diǎn),滿足SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0的形狀是(

)A.等腰直角三角形 B.直角三角形C.等腰(非等邊)三角形 D.等邊三角形【答案】A【詳解】由題知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,兩邊同時(shí)平方并展開(kāi)化簡(jiǎn)可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.綜上可知,SKIPIF1<0的形狀是等腰直角三角形.故選:A.8.如圖SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__.【答案】SKIPIF1<0【詳解】由SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.9.已知平面向量SKIPIF1<0,SKIPIF1<0的夾角為120°,且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0______.【答案】11【詳解】因?yàn)槠矫嫦蛄縎KIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故答案為:11.10.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【詳解】由SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.11.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)若SKIPIF1<0,求實(shí)數(shù)k的值.【答案】(1)6(2)SKIPIF1<0或2【詳解】(1)SKIPIF1<0.所以SKIPIF1<0;(2)由題意可得:SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或2,所以實(shí)數(shù)k的值是-1或2.12.如圖,在△ABC中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)設(shè)SKIPIF1<0,求x,y的值,并求SKIPIF1<0;(2)求SKIPIF1<0的值.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.題組B能力提升練1.若單位向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:B.2.已知向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的夾角SKIPIF1<0.故選:C3.在SKIPIF1<0中,SKIPIF1<0,點(diǎn)E滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.6【答案】B【詳解】SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選:B.4.(多選)對(duì)于任意向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列命題中不正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0中至少有一個(gè)為SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.向量SKIPIF1<0與向量SKIPIF1<0夾角的范圍是SKIPIF1<0 D.SKIPIF1<0【答案】AC【詳解】A,當(dāng)SKIPIF1<0為非零向量,且SKIPIF1<0時(shí),SKIPIF1<0,所以A選項(xiàng)錯(cuò)誤.B,若SKIPIF1<0,則SKIPIF1<0,B選項(xiàng)正確.C,向量SKIPIF1<0與向量SKIPIF1<0夾角的范圍是SKIPIF1<0,所以C選項(xiàng)錯(cuò)誤.D,SKIPIF1<0,D選項(xiàng)正確.故選:AC5.(多選)已知SKIPIF1<0是同一平面內(nèi)的三個(gè)向量,下列命題中正確的是(

)A.SKIPIF1<0B.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0C.兩個(gè)非零向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0共線且反向D.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為銳角,則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0【答案】AC【詳解】對(duì)于A,由平面向量數(shù)量積定義可知SKIPIF1<0,則SKIPIF1<0,所以A正確,對(duì)于B,當(dāng)SKIPIF1<0與SKIPIF1<0都和SKIPIF1<0垂直時(shí),SKIPIF1<0與SKIPIF1<0的方向不一定相同,大小不一定相等,所以B錯(cuò)誤,對(duì)于C,兩個(gè)非零向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則兩個(gè)向量的夾角為SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0共線且反向,故C正確;對(duì)于D,已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0與SKIPIF1<0的夾角為銳角,可得SKIPIF1<0即SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0的夾角為0時(shí),SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0與SKIPIF1<0的夾角為銳角時(shí)SKIPIF1<0且SKIPIF1<0,故D錯(cuò)誤;故選:AC.6.已知在SKIPIF1<0中,SKIPIF1<0.SKIPIF1<0為SKIPIF1<0所在平面內(nèi)的一點(diǎn),滿足SKIPIF1<0,則SKIPIF1<0____________.【答案】4【詳解】取AC的中點(diǎn)D,聯(lián)結(jié)BD,由SKIPIF1<0,知SKIPIF1<0,則O為BD的中點(diǎn),因此SKIPIF1<0,故SKIPIF1<0,故答案為:4.7.如圖,圓SKIPIF1<0是半徑為1的圓,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0為圓上的任意2個(gè)點(diǎn),則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【詳解】解:連接SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,則有SKIPIF1<0.設(shè)SKIPIF1<0為SKIPIF1<0和SKIPIF1<0的夾角.則SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,(當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等)因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值SKIPIF1<0.SKIPIF1<0SKIPIF1<0,(當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值為3,即SKIPIF1<0有最大值3,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<08.如圖,直徑SKIPIF1<0的半圓,SKIPIF1<0為圓心,點(diǎn)SKIPIF1<0在半圓弧上,SKIPIF1<0,線段SKIPIF1<0上有動(dòng)點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0.因此,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.9.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為60°.試求:(1)SKIPIF1<0;(2)SKIPIF1<0與SKIPIF1<0的夾角SKIPIF1<0的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】解:(1)∵SKIPIF1<0,∴SKIPIF1<0.(2)∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.10.如圖,在平行四邊形ABCD中,點(diǎn)E,F(xiàn),G分別在邊AB,AD,BC上,且滿足AE=SKIPIF1<0AB,AF=SKIPIF1<0AD,BG=SKIPIF1<0BC,設(shè)SKIPIF1<0,SKIPIF1<0.(1)用SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0,SKIPIF1<0;(2)若EF⊥EG,SKIPIF1<0,求角A的值.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)由平面向量的線性運(yùn)算可知SKIPIF1<0,SKIPIF1<0.

(2)由題意,因?yàn)镋F⊥EG,所以SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,則可化簡(jiǎn)上式為SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.題組C培優(yōu)拔尖練1.已知SKIPIF1<0為單位向量,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0取到最大值時(shí),SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】根據(jù)題意:SKIPIF1<0與SKIPIF1<0共線,點(diǎn)SKIPIF1<0位于SKIPIF1<0的SKIPIF1<0等分點(diǎn)處(靠近SKIPIF1<0點(diǎn))解法一:欲使SKIPIF1<0最大,根據(jù)“米勒最大角定理”,此時(shí)以SKIPIF1<0為弦圓與SKIPIF1<0相切,根據(jù)切割弦定理:SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.解法二:設(shè)SKIPIF1<0,則SKIPIF1<0,有SKIPIF1<0=SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)成立.故選:A2.在SKIPIF1<0中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則線段CD長(zhǎng)度的最小值為(

)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】D【詳解】解:由SKIPIF1<0及正弦定理,得SKIPIF1<0,即SKIPIF1<0,由余弦定理得,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.由SKIPIF1<0,SKIPIF1<0,兩邊平方,得SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0,∴線段CD長(zhǎng)度的最小值為SKIPIF1<0.故選:D.3.(多選)平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0C.SKIPIF1<0的最大值是SKIPIF1<0 D.若向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0【答案】ACD【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以A正確;SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0,所以B錯(cuò)誤;如圖,作半徑都等于2且公共弦長(zhǎng)等于2的兩個(gè)圓中,SKIPIF1<0則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,符合題意,由圖可知,當(dāng)SKIPIF1<0同過(guò)兩圓的圓心時(shí)SKIPIF1<0最大,此時(shí)SKIPIF1<0的最大值等于圓心距加半徑為SKIPIF1<0,所以C正確;作SKIPIF1<0如圖,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,在射線SKIPIF1<0上取點(diǎn)SKIPIF1<0,使得SKIPIF1<0,過(guò)SKIPIF1<0作直線SKIPIF1<0,則有點(diǎn)SKIPIF1<0在直線l上,取SKIPIF1<0中點(diǎn)SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0重合時(shí)取得等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.所以D正確.故選:ACD.4.(多選)如圖,在四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,E為SKIPIF1<0的中點(diǎn),SKIPIF1<0與SKIPIF1<0相交于F,則下列說(shuō)法一定正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0C.SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】ABC【詳解】解:因?yàn)樵谒倪呅蜸KIPIF1<0中,SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,對(duì)于A:SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)A正確;對(duì)于B:設(shè)SKIPIF1<0的夾角為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,故選項(xiàng)B正確;對(duì)于SKIPIF1<0:由題意,SKIPIF1<0SKIPIF1<0,故選項(xiàng)C正確;對(duì)于D:SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,不滿足SKIPIF1<0SKIPIF1<0,故選項(xiàng)D不正確.故選:ABC.5.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是非零平面向量,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值是_________.【答案】SKIPIF1<0##SKIPIF1<0【詳解】由題,令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,令SKIPIF1<0,根據(jù)幾何性質(zhì),點(diǎn)B在以SKIPIF1<0為圓心,1為半徑的圓上,SKIPIF1<0,又因?yàn)镾KIPIF1<0,利用數(shù)量積公式展開(kāi)可得SKIPIF1<0,所以點(diǎn)C的軌跡為以SKIPIF1<0或SKIPIF1<0為圓心,半徑為1的圓,所以C的橫坐標(biāo)的最大值為SKIPIF1<0,SKIPIF1<0,即為SKIPIF1<0在SKIPIF1<0上的投影,最大值為SKIPIF1<0.故答案為:SKIPIF1<0.6.已知平面向量SKIPIF1<0、SKIPIF1<0、SKIPIF1<0和實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,于是有SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0則如圖所示,在平面直角坐標(biāo)系中SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0SKI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論