人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第31講 拓展二:函數(shù)與方程的綜合應(yīng)用(含解析)_第1頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第31講 拓展二:函數(shù)與方程的綜合應(yīng)用(含解析)_第2頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第31講 拓展二:函數(shù)與方程的綜合應(yīng)用(含解析)_第3頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第31講 拓展二:函數(shù)與方程的綜合應(yīng)用(含解析)_第4頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第31講 拓展二:函數(shù)與方程的綜合應(yīng)用(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第09講拓展二:函數(shù)與方程的綜合應(yīng)用題型01根據(jù)零點(diǎn)求參數(shù)【典例1】(2023春·江蘇宿遷·高一統(tǒng)考期中)函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),則實(shí)數(shù)m的值為(

)A.9 B.12 C.0或9 D.0或12【答案】C【詳解】因?yàn)镾KIPIF1<0,令SKIPIF1<0,得到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得到SKIPIF1<0,滿足題意,當(dāng)SKIPIF1<0時(shí),因?yàn)楹瘮?shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),故SKIPIF1<0,得到SKIPIF1<0,綜上,SKIPIF1<0或SKIPIF1<0.故選:C.【典例2】(2023·全國(guó)·高三專題練習(xí))若函數(shù)SKIPIF1<0恰有SKIPIF1<0個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)镾KIPIF1<0時(shí)至多有一個(gè)零點(diǎn),單調(diào)函數(shù)SKIPIF1<0至多一個(gè)零點(diǎn),而函數(shù)SKIPIF1<0恰有SKIPIF1<0個(gè)零點(diǎn),所以需滿足SKIPIF1<0有1個(gè)零點(diǎn),SKIPIF1<0有1個(gè)零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,故選:D【典例3】(2023秋·四川雅安·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0若SKIPIF1<0恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0或SKIPIF1<0【詳解】又SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0恰有2個(gè)零點(diǎn),所以若SKIPIF1<0和SKIPIF1<0是函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0不是函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0;若SKIPIF1<0和SKIPIF1<0是函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0不是函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0,若SKIPIF1<0和SKIPIF1<0是函數(shù)SKIPIF1<0的零點(diǎn),SKIPIF1<0不是函數(shù)SKIPIF1<0的零點(diǎn),則不存在這樣的SKIPIF1<0.綜上所述:實(shí)數(shù)a的取值范圍是SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【變式1】(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn),SKIPIF1<0與SKIPIF1<0有交點(diǎn),SKIPIF1<0,即SKIPIF1<0,故選:C【變式2】(2023春·新疆昌吉·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,符合題意;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,要使得函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),在方程SKIPIF1<0有兩個(gè)小于SKIPIF1<0的實(shí)根,設(shè)SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上與SKIPIF1<0軸有兩個(gè)交點(diǎn),則滿足SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023·高一課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,若1是此函數(shù)的零點(diǎn),則實(shí)數(shù)SKIPIF1<0的值是.【答案】0【詳解】因?yàn)?是此函數(shù)的零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0題型02求函數(shù)的零點(diǎn)(方程的根)的個(gè)數(shù)【典例1】(2023·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn)的充分條件是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)楹瘮?shù)SKIPIF1<0恒過(guò)點(diǎn)SKIPIF1<0,所以函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn)SKIPIF1<0函數(shù)SKIPIF1<0沒(méi)有零點(diǎn)SKIPIF1<0函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0無(wú)交點(diǎn),數(shù)形結(jié)合可得,SKIPIF1<0或SKIPIF1<0即函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn)的充要條件是SKIPIF1<0或SKIPIF1<0,只有選項(xiàng)SKIPIF1<0是函數(shù)有且只有一個(gè)零點(diǎn)的充分條件,

故選:A【典例2】(2023·全國(guó)·高三專題練習(xí))若函數(shù)SKIPIF1<0,則方程SKIPIF1<0的實(shí)根個(gè)數(shù)為(

)A.3 B.4 C.5 D.6【答案】A【詳解】由SKIPIF1<0,則可作出函數(shù)SKIPIF1<0的圖象如下:由方程SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以方程SKIPIF1<0的實(shí)根個(gè)數(shù)為3.故選:A.【典例3】(2023秋·上海浦東新·高一??计谀┮阎瘮?shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0在SKIPIF1<0上的單調(diào)性并證明;(2)討論函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù).【答案】(1)單調(diào)遞減,證明見(jiàn)解析(2)答案見(jiàn)解析【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0該函數(shù)為單調(diào)遞減函數(shù),證明如下:在區(qū)間SKIPIF1<0上任取SKIPIF1<0,且SKIPIF1<0則SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0,故SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0則函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減.即證.(2)SKIPIF1<0SKIPIF1<0,等價(jià)于SKIPIF1<0即等價(jià)于SKIPIF1<0的根的個(gè)數(shù),令SKIPIF1<0,則其函數(shù)圖像如下所示:由圖可知:當(dāng)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0時(shí),直線SKIPIF1<0與SKIPIF1<0有兩個(gè)交點(diǎn);當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),直線SKIPIF1<0與SKIPIF1<0只有一個(gè)交點(diǎn);當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),直線SKIPIF1<0與SKIPIF1<0有三個(gè)交點(diǎn).故:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有2個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有3個(gè)零點(diǎn).【典例4】(2023春·高一平湖市當(dāng)湖高級(jí)中學(xué)校聯(lián)考期中)已知函數(shù)SKIPIF1<0(其中SKIPIF1<0).(1)若SKIPIF1<0且方程SKIPIF1<0有解,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若SKIPIF1<0是偶函數(shù),討論函數(shù)SKIPIF1<0的零點(diǎn)情況.【答案】(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí)函數(shù)無(wú)零點(diǎn),當(dāng)SKIPIF1<0時(shí)函數(shù)有一個(gè)零點(diǎn).【詳解】(1)因?yàn)榉匠蘏KIPIF1<0有解,所以方程SKIPIF1<0有解,即SKIPIF1<0的值域與方程SKIPIF1<0的值域相同.SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0;(2)因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0,有SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0滿足題意.函數(shù)SKIPIF1<0的零點(diǎn)情況等價(jià)于SKIPIF1<0的解的情況,即SKIPIF1<0,討論SKIPIF1<0的解的情況,令SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)方程SKIPIF1<0無(wú)解,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0開(kāi)口向上,且恒過(guò)定點(diǎn)SKIPIF1<0,則SKIPIF1<0只有一解,此時(shí)方程SKIPIF1<0只有1解,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0開(kāi)口向下,且恒過(guò)定點(diǎn)SKIPIF1<0,且函數(shù)的對(duì)稱軸SKIPIF1<0,則方程(*)無(wú)解,綜上所述:當(dāng)SKIPIF1<0時(shí)函數(shù)無(wú)零點(diǎn),當(dāng)SKIPIF1<0時(shí)函數(shù)有一個(gè)零點(diǎn).【變式1】(2023·山東濰坊·統(tǒng)考模擬預(yù)測(cè))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn)個(gè)數(shù)是(

)A.3 B.4 C.5 D.6【答案】A【詳解】求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn)個(gè)數(shù),轉(zhuǎn)化為方程SKIPIF1<0在區(qū)間SKIPIF1<0上的根的個(gè)數(shù).由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn)個(gè)數(shù)為3.故選:A.【變式2】(2023秋·內(nèi)蒙古烏蘭察布·高一??计谀┖瘮?shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)是(

).A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)【答案】C【詳解】分別做出函數(shù)SKIPIF1<0和函數(shù)SKIPIF1<0的圖像,如上圖所示,由圖像可知,兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)是SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)是SKIPIF1<0.故選:C【變式3】(2023春·安徽·高一安徽省舒城中學(xué)校聯(lián)考期中)已知函數(shù)SKIPIF1<0是偶函數(shù).(1)求實(shí)數(shù)SKIPIF1<0的值;(2)求方程SKIPIF1<0的實(shí)根的個(gè)數(shù);(3)若函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)1(3)SKIPIF1<0【詳解】(1)因?yàn)楹瘮?shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)閷?duì)定義域內(nèi)的任意SKIPIF1<0上式恒成立,所以SKIPIF1<0.(2)由(1)可知SKIPIF1<0的解析式為SKIPIF1<0.所以SKIPIF1<0.因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0.所以方程SKIPIF1<0的實(shí)根的個(gè)數(shù)為1.(3)由題可知SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0可化為SKIPIF1<0.令函數(shù)SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,舍去.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0的圖象開(kāi)口向上,因?yàn)镾KIPIF1<0,所以SKIPIF1<0一定存在唯一的正根,符合題意.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0的圖象開(kāi)口向下,因?yàn)镾KIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.又SKIPIF1<0,所以對(duì)稱軸SKIPIF1<0,所以SKIPIF1<0(舍去)或SKIPIF1<0.所以SKIPIF1<0.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【變式4】(2023秋·貴州黔東南·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0為偶函數(shù).(1)求實(shí)數(shù)SKIPIF1<0的值;(2)判斷函數(shù)SKIPIF1<0零點(diǎn)的個(gè)數(shù).【答案】(1)SKIPIF1<0(2)一個(gè)零點(diǎn)【詳解】(1)因?yàn)楹瘮?shù)SKIPIF1<0SKIPIF1<0為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.(2)由(1)知SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù)等價(jià)于方程SKIPIF1<0根的個(gè)數(shù),即方程SKIPIF1<0根的個(gè)數(shù),令SKIPIF1<0,則轉(zhuǎn)化為方程SKIPIF1<0根的個(gè)數(shù),而方程SKIPIF1<0的根為SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0有一個(gè)零點(diǎn).【點(diǎn)睛】利用函數(shù)的奇偶性求參數(shù),關(guān)鍵點(diǎn)在于利用好函數(shù)的奇偶性,即函數(shù)SKIPIF1<0是奇函數(shù)時(shí),有SKIPIF1<0,函數(shù)SKIPIF1<0是偶函數(shù)時(shí),有SKIPIF1<0.題型03函數(shù)與方程的綜合應(yīng)用【典例1】(2023秋·湖北·高一湖北省黃梅縣第一中學(xué)校聯(lián)考期末)已知SKIPIF1<0為偶函數(shù).(1)求SKIPIF1<0的值;(2)解不等式SKIPIF1<0;(3)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有4個(gè)不相等的實(shí)根,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0恒成立,即SKIPIF1<0恒成立,而SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0.(2)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增且SKIPIF1<0,SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增且SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,值域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0的值域?yàn)镾KIPIF1<0.SKIPIF1<0,SKIPIF1<0不等式SKIPIF1<0的解集為SKIPIF1<0.(3)令SKIPIF1<0,則原方程可化為SKIPIF1<0,由(2)知SKIPIF1<0且方程SKIPIF1<0僅有一根,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有兩個(gè)不相等的實(shí)根,SKIPIF1<0關(guān)于SKIPIF1<0的方程SKIPIF1<0有4個(gè)不相等的實(shí)根,SKIPIF1<0關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有2個(gè)不相等的實(shí)根,記SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0.【典例2】(2023春·江蘇南京·高二南京市中華中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0的值域;(2)令SKIPIF1<0,則SKIPIF1<0,已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0有零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,由二次函數(shù)的性質(zhì)可知,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0為增函數(shù),所以函數(shù)的最大值為SKIPIF1<0,函數(shù)的最小值為SKIPIF1<0,則函數(shù)的值域?yàn)镾KIPIF1<0.(2)SKIPIF1<0,令SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,則問(wèn)題等價(jià)為SKIPIF1<0在SKIPIF1<0上有零點(diǎn),即SKIPIF1<0在SKIPIF1<0上有解,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則由對(duì)勾函數(shù)的性質(zhì)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【典例3】(2023秋·云南昆明·高一統(tǒng)考期末)設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0定義域內(nèi)的一個(gè)子集,若存在SKIPIF1<0,使得SKIPIF1<0成立,則稱SKIPIF1<0是SKIPIF1<0的一個(gè)“不動(dòng)點(diǎn)”,也稱SKIPIF1<0在區(qū)間SKIPIF1<0上存在不動(dòng)點(diǎn),例如SKIPIF1<0的“不動(dòng)點(diǎn)”滿足SKIPIF1<0,即SKIPIF1<0的“不動(dòng)點(diǎn)”是SKIPIF1<0.設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的不動(dòng)點(diǎn);(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上不存在不動(dòng)點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)根據(jù)題目給出的“不動(dòng)點(diǎn)”的定義,可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上的不動(dòng)點(diǎn)為SKIPIF1<0.(2)根據(jù)已知,得SKIPIF1<0在區(qū)間SKIPIF1<0上無(wú)解,所以SKIPIF1<0在SKIPIF1<0上無(wú)解,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在區(qū)間SKIPIF1<0上無(wú)解,所以SKIPIF1<0在區(qū)間SKIPIF1<0上無(wú)解,設(shè)SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,又因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0上恒成立,所以SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,所以SKIPIF1<0,則SKIPIF1<0綜上,實(shí)數(shù)a的取值范圍是SKIPIF1<0.【變式1】(2023春·江蘇泰州·高二泰州中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0是偶函數(shù).(1)求SKIPIF1<0的值;(2)若方程SKIPIF1<0有解,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由已知可得,SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0為R上的偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0恒成立,所以,SKIPIF1<0,解得SKIPIF1<0.(2)由(1)知,SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0有解,即SKIPIF1<0有解,所以SKIPIF1<0.【變式2】(2023春·湖南株洲·高一株洲二中校考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0是偶函數(shù).(1)求SKIPIF1<0的值;(2)若方程SKIPIF1<0有兩個(gè)不等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,則SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,因?yàn)镾KIP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論